BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24452754)

  • 1. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the performance of protein kinase identification via high dimensional protein-protein interactions and substrate structure data.
    Xu X; Li A; Zou L; Shen Y; Fan W; Wang M
    Mol Biosyst; 2014 Mar; 10(3):694-702. PubMed ID: 24448631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine.
    Dou Y; Yao B; Zhang C
    Amino Acids; 2014 Jun; 46(6):1459-69. PubMed ID: 24623121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of kinase-specific phosphorylation sites using conditional random fields.
    Dang TH; Van Leemput K; Verschoren A; Laukens K
    Bioinformatics; 2008 Dec; 24(24):2857-64. PubMed ID: 18940828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of kinase-substrate relations based on heterogeneous networks.
    Li H; Wang M; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542003. PubMed ID: 26608750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.
    Xue Y; Liu Z; Cao J; Ma Q; Gao X; Wang Q; Jin C; Zhou Y; Wen L; Ren J
    Protein Eng Des Sel; 2011 Mar; 24(3):255-60. PubMed ID: 21062758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins.
    Diella F; Cameron S; Gemünd C; Linding R; Via A; Kuster B; Sicheritz-Pontén T; Blom N; Gibson TJ
    BMC Bioinformatics; 2004 Jun; 5():79. PubMed ID: 15212693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest.
    Ismail HD; Jones A; Kim JH; Newman RH; Kc DB
    Biomed Res Int; 2016; 2016():3281590. PubMed ID: 27066500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.
    Huang HD; Lee TY; Tzeng SW; Horng JT
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W226-9. PubMed ID: 15980458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating hidden Markov models for identifying protein kinase-specific phosphorylation sites.
    Huang HD; Lee TY; Tzeng SW; Wu LC; Horng JT; Tsou AP; Huang KT
    J Comput Chem; 2005 Jul; 26(10):1032-41. PubMed ID: 15889432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.
    Tsaousis GN; Bagos PG; Hamodrakas SJ
    Biochim Biophys Acta; 2014 Feb; 1844(2):316-22. PubMed ID: 24225132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features.
    Pan XY; Zhang YN; Shen HB
    J Proteome Res; 2010 Oct; 9(10):4992-5001. PubMed ID: 20698572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A summary of computational resources for protein phosphorylation.
    Xue Y; Gao X; Cao J; Liu Z; Jin C; Wen L; Yao X; Ren J
    Curr Protein Pept Sci; 2010 Sep; 11(6):485-96. PubMed ID: 20491621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of kinase-specific phosphorylation sites with sequence features by a log-odds ratio approach.
    Li T; Li F; Zhang X
    Proteins; 2008 Feb; 70(2):404-14. PubMed ID: 17680694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Literature mining of protein phosphorylation using dependency parse trees.
    Wang M; Xia H; Sun D; Chen Z; Wang M; Li A
    Methods; 2014 Jun; 67(3):386-93. PubMed ID: 24440484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
    Yao Q; Xu D
    Methods Mol Biol; 2017; 1558():127-138. PubMed ID: 28150236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.