BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24452754)

  • 21. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events.
    Patrick R; Lê Cao KA; Kobe B; Bodén M
    Bioinformatics; 2015 Feb; 31(3):382-9. PubMed ID: 25304781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphoproteome sequence analysis and significance: mining association patterns around phosphorylation sites utilizing MAPRes.
    Ahmad I; Mehmood A; Khurshid A; Qazi WM; Hoessli DC; Walker-Nasir E; Shakoori AR;
    J Cell Biochem; 2009 Sep; 108(1):64-74. PubMed ID: 19544398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GPS: a comprehensive www server for phosphorylation sites prediction.
    Xue Y; Zhou F; Zhu M; Ahmed K; Chen G; Yao X
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W184-7. PubMed ID: 15980451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites.
    Zou L; Wang M; Shen Y; Liao J; Li A; Wang M
    BMC Bioinformatics; 2013 Aug; 14():247. PubMed ID: 23941207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying Interactions Between Kinases and Substrates Based on Protein-Protein Interaction Network.
    Chen Q; Deng C; Lan W; Liu Z; Zheng R; Liu J; Wang J
    J Comput Biol; 2019 Aug; 26(8):836-845. PubMed ID: 30990327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Phosphorylation Site-Kinase Network-Based Method for the Accurate Prediction of Kinase-Substrate Relationships.
    Wang M; Wang T; Wang B; Liu Y; Li A
    Biomed Res Int; 2017; 2017():1826496. PubMed ID: 29312990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins.
    Durek P; Schudoma C; Weckwerth W; Selbig J; Walther D
    BMC Bioinformatics; 2009 Apr; 10():117. PubMed ID: 19383128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method.
    Zhang N; Li BQ; Gao S; Ruan JS; Cai YD
    Mol Biosyst; 2012 Nov; 8(11):2946-55. PubMed ID: 22918520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS).
    Zhou F; Xue Y; Yao X; Xu Y
    Bioinformatics; 2006 Apr; 22(7):894-6. PubMed ID: 16434441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PPIevo: protein-protein interaction prediction from PSSM based evolutionary information.
    Zahiri J; Yaghoubi O; Mohammad-Noori M; Ebrahimpour R; Masoudi-Nejad A
    Genomics; 2013 Oct; 102(4):237-42. PubMed ID: 23747746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting genes involved in human cancer using network contextual information.
    Rahmani H; Blockeel H; Bender A
    J Integr Bioinform; 2012 Sep; 9(1):210. PubMed ID: 22948007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A support vector machine approach to the identification of phosphorylation sites.
    Plewczyński D; Tkacz A; Godzik A; Rychlewski L
    Cell Mol Biol Lett; 2005; 10(1):73-89. PubMed ID: 15809681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporating substrate sequence motifs and spatial amino acid composition to identify kinase-specific phosphorylation sites on protein three-dimensional structures.
    Su MG; Lee TY
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S2. PubMed ID: 24564522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: implications for biological function.
    Ahmad I; Hoessli DC; Gupta R; Walker-Nasir E; Rafik SM; Choudhary MI; Shakoori AR;
    J Cell Biochem; 2007 Apr; 100(6):1558-72. PubMed ID: 17230456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ranking Gene Ontology terms for predicting non-classical secretory proteins in eukaryotes and prokaryotes.
    Huang WL
    J Theor Biol; 2012 Nov; 312():105-13. PubMed ID: 22967952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources.
    Li T; Du P; Xu N
    PLoS One; 2010 Nov; 5(11):e15411. PubMed ID: 21085571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information.
    Biswas AK; Noman N; Sikder AR
    BMC Bioinformatics; 2010 May; 11():273. PubMed ID: 20492656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.