BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24452803)

  • 1. Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants.
    Sirk SJ; Gaj T; Jonsson A; Mercer AC; Barbas CF
    Nucleic Acids Res; 2014 Apr; 42(7):4755-66. PubMed ID: 24452803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells.
    Gaj T; Mercer AC; Sirk SJ; Smith HL; Barbas CF
    Nucleic Acids Res; 2013 Apr; 41(6):3937-46. PubMed ID: 23393187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome.
    Wallen MC; Gaj T; Barbas CF
    PLoS One; 2015; 10(9):e0139123. PubMed ID: 26414179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc-finger recombinase activities in vitro.
    Prorocic MM; Wenlong D; Olorunniji FJ; Akopian A; Schloetel JG; Hannigan A; McPherson AL; Stark WM
    Nucleic Acids Res; 2011 Nov; 39(21):9316-28. PubMed ID: 21849325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign.
    Gaj T; Sirk SJ; Tingle RD; Mercer AC; Wallen MC; Barbas CF
    J Am Chem Soc; 2014 Apr; 136(13):5047-56. PubMed ID: 24611715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of programmable zinc finger-recombinases with activity in human cells.
    Gordley RM; Smith JD; Gräslund T; Barbas CF
    J Mol Biol; 2007 Mar; 367(3):802-13. PubMed ID: 17289078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc finger recombinases with adaptable DNA sequence specificity.
    Proudfoot C; McPherson AL; Kolb AF; Stark WM
    PLoS One; 2011 Apr; 6(4):e19537. PubMed ID: 21559340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of recombinase specificity by split gene reassembly.
    Gersbach CA; Gaj T; Gordley RM; Barbas CF
    Nucleic Acids Res; 2010 Jul; 38(12):4198-206. PubMed ID: 20194120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system.
    Nomura W; Masuda A; Ohba K; Urabe A; Ito N; Ryo A; Yamamoto N; Tamamura H
    Biochemistry; 2012 Feb; 51(7):1510-7. PubMed ID: 22304662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Evolution of Targeted Recombinases for Genome Engineering.
    Sirk SJ
    Methods Mol Biol; 2018; 1867():89-102. PubMed ID: 30155817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of programmable integrases.
    Gordley RM; Gersbach CA; Barbas CF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5053-8. PubMed ID: 19282480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and In Vitro Characterization of Zinc Finger Recombinases.
    Olorunniji FJ; Rosser SJ; Marshall Stark W
    Methods Mol Biol; 2017; 1642():229-245. PubMed ID: 28815504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-guided reprogramming of serine recombinase DNA sequence specificity.
    Gaj T; Mercer AC; Gersbach CA; Gordley RM; Barbas CF
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):498-503. PubMed ID: 21187418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies.
    Gersbach CA; Gaj T; Barbas CF
    Acc Chem Res; 2014 Aug; 47(8):2309-18. PubMed ID: 24877793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase.
    Gersbach CA; Gaj T; Gordley RM; Mercer AC; Barbas CF
    Nucleic Acids Res; 2011 Sep; 39(17):7868-78. PubMed ID: 21653554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome engineering with custom recombinases.
    Gaj T; Barbas CF
    Methods Enzymol; 2014; 546():79-91. PubMed ID: 25398336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric TALE recombinases with programmable DNA sequence specificity.
    Mercer AC; Gaj T; Fuller RP; Barbas CF
    Nucleic Acids Res; 2012 Nov; 40(21):11163-72. PubMed ID: 23019222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach.
    Abi-Ghanem J; Chusainow J; Karimova M; Spiegel C; Hofmann-Sieber H; Hauber J; Buchholz F; Pisabarro MT
    Nucleic Acids Res; 2013 Feb; 41(4):2394-403. PubMed ID: 23275541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serine recombinases as tools for genome engineering.
    Brown WR; Lee NC; Xu Z; Smith MC
    Methods; 2011 Apr; 53(4):372-9. PubMed ID: 21195181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of Cre recombinase site specificity by substrate-linked protein evolution.
    Buchholz F; Stewart AF
    Nat Biotechnol; 2001 Nov; 19(11):1047-52. PubMed ID: 11689850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.