These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24452830)

  • 1. A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus.
    Gilland E; Straka H; Wong TW; Baker R; Zottoli SJ
    J Comp Neurol; 2014 Jul; 522(10):2446-64. PubMed ID: 24452830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental arrangement of reticulospinal neurons in the goldfish hindbrain.
    Lee RK; Eaton RC; Zottoli SJ
    J Comp Neurol; 1993 Mar; 329(4):539-56. PubMed ID: 8454739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation of segmental hindbrain organization in adult frogs.
    Straka H; Baker R; Gilland E
    J Comp Neurol; 2006 Jan; 494(2):228-45. PubMed ID: 16320236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain.
    Murakami Y; Pasqualetti M; Takio Y; Hirano S; Rijli FM; Kuratani S
    Development; 2004 Mar; 131(5):983-95. PubMed ID: 14973269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hindbrain neurovascular anatomy of adult goldfish (Carassius auratus).
    Rahmat S; Gilland E
    J Anat; 2019 Oct; 235(4):783-793. PubMed ID: 31218682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary patterns of cranial nerve efferent nuclei in vertebrates.
    Gilland E; Baker R
    Brain Behav Evol; 2005; 66(4):234-54. PubMed ID: 16254413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.
    Linville A; Gumusaneli E; Chandraratna RA; Schilling TF
    Dev Biol; 2004 Jun; 270(1):186-99. PubMed ID: 15136149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva.
    Metcalfe WK; Mendelson B; Kimmel CB
    J Comp Neurol; 1986 Sep; 251(2):147-59. PubMed ID: 3782495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeodomain transcription factors in the development of subsets of hindbrain reticulospinal neurons.
    Cepeda-Nieto AC; Pfaff SL; Varela-Echavarría A
    Mol Cell Neurosci; 2005 Jan; 28(1):30-41. PubMed ID: 15607939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and organization of the descending serotonergic brainstem-spinal projections in the sea lamprey.
    Barreiro-Iglesias A; Villar-Cerviño V; Anadón R; Rodicio MC
    J Chem Neuroanat; 2008 Oct; 36(2):77-84. PubMed ID: 18602462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-localization of nitric oxide synthase and choline acetyltransferase in the brain of the goldfish (Carassius auratus).
    Giraldez-Perez RM; Gaytan SP; Torres B; Pasaro R
    J Chem Neuroanat; 2009 Jan; 37(1):1-17. PubMed ID: 18804528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head.
    Gilland E; Baker R
    Acta Anat (Basel); 1993; 148(2-3):110-23. PubMed ID: 8109194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Afferents to the oculomotor nucleus in the goldfish (Carassius auratus) as revealed by retrograde labeling with horseradish peroxidase.
    Torres B; Pastor AM; Cabrera B; Salas C; Delgado-García JM
    J Comp Neurol; 1992 Oct; 324(3):449-61. PubMed ID: 1401270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona).
    González A; López JM; Sánchez-Camacho C; Marín O
    J Comp Neurol; 2002 Jul; 448(3):249-67. PubMed ID: 12115707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons.
    Straka H; Baker R; Gilland E
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):301-5. PubMed ID: 11922977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending projections to the hindbrain and spinal cord in the paddlefish Polyodon spathula.
    Metzen MG; Chambwa M; Wilkens LA; Hofmann MH
    Brain Res; 2010 Mar; 1317():33-45. PubMed ID: 20051233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descending projection neurons to the spinal cord of the goldfish, Carassius auratus.
    Prasada Rao PD; Jadhao AG; Sharma SC
    J Comp Neurol; 1987 Nov; 265(1):96-108. PubMed ID: 2826554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographic organization of descending projection neurons to the spinal cord of the goldfish, Carassius auratus.
    Rao PD; Jadhao AG; Sharma SC
    Brain Res; 1993 Aug; 620(2):211-20. PubMed ID: 7690299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusible signals and fasciculated growth in reticulospinal axon pathfinding in the hindbrain.
    Hernández-Montiel HL; Meléndez-Herrera E; Cepeda-Nieto AC; Mejía-Viggiano C; Larriva-Sahd J; Guthrie S; Varela-Echavarría A
    Dev Biol; 2003 Mar; 255(1):99-112. PubMed ID: 12618136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.