BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24453039)

  • 1. Ratiometric MRI sensors based on core-shell nanoparticles for quantitative pH imaging.
    Okada S; Mizukami S; Sakata T; Matsumura Y; Yoshioka Y; Kikuchi K
    Adv Mater; 2014 May; 26(19):2989-92. PubMed ID: 24453039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxometric investigations and MRI evaluation of a liposome-loaded pH-responsive gadolinium(III) complex.
    Gianolio E; Porto S; Napolitano R; Baroni S; Giovenzana GB; Aime S
    Inorg Chem; 2012 Jul; 51(13):7210-7. PubMed ID: 22716284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI.
    Guari Y; Larionova J; Corti M; Lascialfari A; Marinone M; Poletti G; Molvinger K; Guérin C
    Dalton Trans; 2008 Jul; (28):3658-60. PubMed ID: 18615211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switchable MRI contrast agents based on morphological changes of pH-responsive polymers.
    Okada S; Mizukami S; Kikuchi K
    Bioorg Med Chem; 2012 Jan; 20(2):769-74. PubMed ID: 22206870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration-independent MRI of pH with a dendrimer-based pH-responsive nanoprobe.
    Bhuiyan MP; Aryal MP; Janic B; Karki K; Varma NR; Ewing JR; Arbab AS; Ali MM
    Contrast Media Mol Imaging; 2015; 10(6):481-6. PubMed ID: 26173742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.
    Yang M; Gao L; Liu K; Luo C; Wang Y; Yu L; Peng H; Zhang W
    Talanta; 2015 Jan; 131():661-5. PubMed ID: 25281156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a stimuli-responsive polymer to the development of novel MRI probes.
    Okada S; Mizukami S; Kikuchi K
    Chembiochem; 2010 Apr; 11(6):785-7. PubMed ID: 20209557
    [No Abstract]   [Full Text] [Related]  

  • 8. Activatable 19F MRI nanoparticle probes for the detection of reducing environments.
    Nakamura T; Matsushita H; Sugihara F; Yoshioka Y; Mizukami S; Kikuchi K
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):1007-10. PubMed ID: 25413833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging.
    Khandhar AP; Wilson GJ; Kaul MG; Salamon J; Jung C; Krishnan KM
    J Biomed Mater Res A; 2018 Sep; 106(9):2440-2447. PubMed ID: 29664208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers.
    Rowe MD; Chang CC; Thamm DH; Kraft SL; Harmon JF; Vogt AP; Sumerlin BS; Boyes SG
    Langmuir; 2009 Aug; 25(16):9487-99. PubMed ID: 19422256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent.
    Babič A; Vorobiev V; Xayaphoummine C; Lapicorey G; Chauvin AS; Helm L; Allémann E
    Chemistry; 2018 Jan; 24(6):1348-1357. PubMed ID: 29120077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents.
    Zhu L; Yang Y; Farquhar K; Wang J; Tian C; Ranville J; Boyes SG
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):5040-50. PubMed ID: 26790986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance
    Zhao D; Peng S; Xiao H; Li Q; Chai Y; Sun H; Liu R; Yao L; Ma L
    ACS Appl Bio Mater; 2023 Jun; 6(6):2137-2144. PubMed ID: 37229527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for increasing relaxivity of gold nanoparticle based MRI contrast agents.
    Warsi MF; Chechik V
    Phys Chem Chem Phys; 2011 May; 13(20):9812-7. PubMed ID: 21503280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic regulation of longitudinal and transverse relaxivity of extremely small iron oxide nanoparticles (ESIONPs) using pH-responsive nanoassemblies.
    Cao Y; He Y; Mao Z; Kuang Y; Liu M; Zhang Y; Pei R
    Nanoscale; 2020 Aug; 12(33):17502-17516. PubMed ID: 32812615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gadolinium Metallofullerene-Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release.
    Wang S; Zhou Z; Wang Z; Liu Y; Jacobson O; Shen Z; Fu X; Chen ZY; Chen X
    Small; 2019 Apr; 15(16):e1900691. PubMed ID: 30913380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers.
    Craciun I; Gunkel-Grabole G; Belluati A; Palivan CG; Meier W
    Nanomedicine (Lond); 2017 Apr; 12(7):811-817. PubMed ID: 28322116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images.
    Park JY; Baek MJ; Choi ES; Woo S; Kim JH; Kim TJ; Jung JC; Chae KS; Chang Y; Lee GH
    ACS Nano; 2009 Nov; 3(11):3663-9. PubMed ID: 19835389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy pH responsive contrast agents.
    Pérez-Mayoral E; Negri V; Soler-Padrós J; Cerdán S; Ballesteros P
    Eur J Radiol; 2008 Sep; 67(3):453-8. PubMed ID: 18455343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-molecular-weight ditopic MRI probe for ratiometric sensing of zwitterionic amino acid neurotransmitters.
    Toljić Đ; Angelovski G
    Chem Commun (Camb); 2019 Oct; 55(79):11924-11927. PubMed ID: 31528965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.