These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24453185)
1. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins. Jung YS; Oh KI; Hwang GS; Cho M Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185 [TBL] [Abstract][Full Text] [Related]
2. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive library of blocked dipeptides reveals intrinsic backbone conformational propensities of unfolded proteins. Oh KI; Lee KK; Park EK; Jung Y; Hwang GS; Cho M Proteins; 2012 Apr; 80(4):977-90. PubMed ID: 22223291 [TBL] [Abstract][Full Text] [Related]
4. Structural and dynamic characterization of the acid-unfolded state of hUBF HMG box 1 provides clues for the early events in protein folding. Zhang X; Xu Y; Zhang J; Wu J; Shi Y Biochemistry; 2005 Jun; 44(22):8117-25. PubMed ID: 15924431 [TBL] [Abstract][Full Text] [Related]
5. The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence. Chen TC; Hsiao CL; Huang SJ; Huang JR Protein Pept Lett; 2016; 23(11):967-975. PubMed ID: 27653629 [TBL] [Abstract][Full Text] [Related]
6. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. Tamiola K; Acar B; Mulder FA J Am Chem Soc; 2010 Dec; 132(51):18000-3. PubMed ID: 21128621 [TBL] [Abstract][Full Text] [Related]
7. Conformational distributions of denatured and unstructured proteins are similar to those of 20 × 20 blocked dipeptides. Oh KI; Jung YS; Hwang GS; Cho M J Biomol NMR; 2012 May; 53(1):25-41. PubMed ID: 22426785 [TBL] [Abstract][Full Text] [Related]
8. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. Greenfield NJ; Huang YJ; Palm T; Swapna GV; Monleon D; Montelione GT; Hitchcock-DeGregori SE J Mol Biol; 2001 Sep; 312(4):833-47. PubMed ID: 11575936 [TBL] [Abstract][Full Text] [Related]
9. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides. Altheimer BD; Mehta MA J Phys Chem A; 2014 Apr; 118(14):2618-28. PubMed ID: 24654604 [TBL] [Abstract][Full Text] [Related]
10. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. Jiang F; Zhou CY; Wu YD J Phys Chem B; 2014 Jun; 118(25):6983-98. PubMed ID: 24815738 [TBL] [Abstract][Full Text] [Related]
11. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides. Schweitzer-Stenner R; Toal SE Mol Biosyst; 2016 Oct; 12(11):3294-3306. PubMed ID: 27545097 [TBL] [Abstract][Full Text] [Related]
12. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information. Hudáky P; Perczel A J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335 [TBL] [Abstract][Full Text] [Related]
13. Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins. Shen Y; Roche J; Grishaev A; Bax A Protein Sci; 2018 Jan; 27(1):146-158. PubMed ID: 28884933 [TBL] [Abstract][Full Text] [Related]
14. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts. Jensen MR; Salmon L; Nodet G; Blackledge M J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887 [TBL] [Abstract][Full Text] [Related]
15. Side-chain chi(1) conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings. Vajpai N; Gentner M; Huang JR; Blackledge M; Grzesiek S J Am Chem Soc; 2010 Mar; 132(9):3196-203. PubMed ID: 20155903 [TBL] [Abstract][Full Text] [Related]
16. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-alanine zwitterion and analysis of its conformational behavior. Bour P; Budesínský M; Spirko V; Kapitán J; Sebestík J; Sychrovský V J Am Chem Soc; 2005 Dec; 127(48):17079-89. PubMed ID: 16316255 [TBL] [Abstract][Full Text] [Related]
17. Sequence-dependent correction of random coil NMR chemical shifts. Schwarzinger S; Kroon GJ; Foss TR; Chung J; Wright PE; Dyson HJ J Am Chem Soc; 2001 Apr; 123(13):2970-8. PubMed ID: 11457007 [TBL] [Abstract][Full Text] [Related]
18. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides. Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402 [TBL] [Abstract][Full Text] [Related]
19. A theoretical case study of type I and type II beta-turns. Czinki E; Császár AG; Perczel A Chemistry; 2003 Mar; 9(5):1182-91. PubMed ID: 12596154 [TBL] [Abstract][Full Text] [Related]
20. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts. Kragelj J; Ozenne V; Blackledge M; Jensen MR Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]