These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24453185)
41. Extensive formation of off-pathway species during folding of an alpha-beta parallel protein is due to docking of (non)native structure elements in unfolded molecules. Nabuurs SM; Westphal AH; van Mierlo CP J Am Chem Soc; 2008 Dec; 130(50):16914-20. PubMed ID: 19053416 [TBL] [Abstract][Full Text] [Related]
42. Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range. Hendus-Altenburger R; Fernandes CB; Bugge K; Kunze MBA; Boomsma W; Kragelund BB J Biomol NMR; 2019 Dec; 73(12):713-725. PubMed ID: 31598803 [TBL] [Abstract][Full Text] [Related]
43. Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta. Choy WY; Shortle D; Kay LE J Am Chem Soc; 2003 Feb; 125(7):1748-58. PubMed ID: 12580600 [TBL] [Abstract][Full Text] [Related]
44. Impact of hydrostatic pressure on an intrinsically disordered protein: a high-pressure NMR study of α-synuclein. Roche J; Ying J; Maltsev AS; Bax A Chembiochem; 2013 Sep; 14(14):1754-61. PubMed ID: 23813793 [TBL] [Abstract][Full Text] [Related]
45. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. Kjaergaard M; Poulsen FM J Biomol NMR; 2011 Jun; 50(2):157-65. PubMed ID: 21604143 [TBL] [Abstract][Full Text] [Related]
46. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins. Borcherds WM; Daughdrill GW Methods Enzymol; 2018; 611():101-136. PubMed ID: 30471686 [TBL] [Abstract][Full Text] [Related]
47. Characterisation of the conformational properties of urea-unfolded Im7: implications for the early stages of protein folding. Le Duff CS; Whittaker SB; Radford SE; Moore GR J Mol Biol; 2006 Dec; 364(4):824-35. PubMed ID: 17045607 [TBL] [Abstract][Full Text] [Related]
48. Alpha-gamma hybrid peptides that contain the conformationally constrained gabapentin residue: characterization of mimetics of chain reversals. Aravinda S; Ananda K; Shamala N; Balaram P Chemistry; 2003 Oct; 9(19):4789-95. PubMed ID: 14566887 [TBL] [Abstract][Full Text] [Related]
49. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis. Modig K; Jürgensen VW; Lindorff-Larsen K; Fieber W; Bohr HG; Poulsen FM FEBS Lett; 2007 Oct; 581(25):4965-71. PubMed ID: 17910956 [TBL] [Abstract][Full Text] [Related]
50. Determination of conformational preferences of dipeptides using vibrational spectroscopy. Grdadolnik J; Grdadolnik SG; Avbelj F J Phys Chem B; 2008 Mar; 112(9):2712-8. PubMed ID: 18260662 [TBL] [Abstract][Full Text] [Related]
51. Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints. Marsh JA; Forman-Kay JD J Mol Biol; 2009 Aug; 391(2):359-74. PubMed ID: 19501099 [TBL] [Abstract][Full Text] [Related]
52. Insight into a random coil conformation and an isolated helix: structural and dynamical characterisation of the C-helix peptide from hen lysozyme. Bolin KA; Pitkeathly M; Miranker A; Smith LJ; Dobson CM J Mol Biol; 1996 Aug; 261(3):443-53. PubMed ID: 8780785 [TBL] [Abstract][Full Text] [Related]
53. Investigation of the neighboring residue effects on protein chemical shifts. Wang Y; Jardetzky O J Am Chem Soc; 2002 Nov; 124(47):14075-84. PubMed ID: 12440906 [TBL] [Abstract][Full Text] [Related]
54. Nuclear magnetic resonance secondary shifts of a light-harvesting 2 complex reveal local backbone perturbations induced by its higher-order interactions. Pandit A; Wawrzyniak PK; van Gammeren AJ; Buda F; Ganapathy S; de Groot HJ Biochemistry; 2010 Jan; 49(3):478-86. PubMed ID: 19954238 [TBL] [Abstract][Full Text] [Related]
55. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database. Xu XP; Case DA J Biomol NMR; 2001 Dec; 21(4):321-33. PubMed ID: 11824752 [TBL] [Abstract][Full Text] [Related]
56. Secondary structural effects on protein NMR chemical shifts. Wang Y J Biomol NMR; 2004 Nov; 30(3):233-44. PubMed ID: 15754052 [TBL] [Abstract][Full Text] [Related]
57. Disorder and order in unfolded and disordered peptides and proteins: a view derived from tripeptide conformational analysis. II. Tripeptides with short side chains populating asx and β-type like turn conformations. Rybka K; Toal SE; Verbaro DJ; Mathieu D; Schwalbe H; Schweitzer-Stenner R Proteins; 2013 Jun; 81(6):968-83. PubMed ID: 23229867 [TBL] [Abstract][Full Text] [Related]
58. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. Cheung MS; Maguire ML; Stevens TJ; Broadhurst RW J Magn Reson; 2010 Feb; 202(2):223-33. PubMed ID: 20015671 [TBL] [Abstract][Full Text] [Related]
59. Molecular dynamics simulations of small peptides: can one derive conformational preferences from ROESY spectra? Peter C; Rueping M; Wörner HJ; Jaun B; Seebach D; van Gunsteren WF Chemistry; 2003 Dec; 9(23):5838-49. PubMed ID: 14673855 [TBL] [Abstract][Full Text] [Related]
60. Conformational analysis of short polar side-chain amino-acids through umbrella sampling and DFT calculations. Ramos J; Cruz VL J Mol Model; 2016 Nov; 22(11):273. PubMed ID: 27783230 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]