These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24453212)

  • 21. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes.
    Watanabe T; Totoki Y; Toyoda A; Kaneda M; Kuramochi-Miyagawa S; Obata Y; Chiba H; Kohara Y; Kono T; Nakano T; Surani MA; Sakaki Y; Sasaki H
    Nature; 2008 May; 453(7194):539-43. PubMed ID: 18404146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cis-antisense RNA, another level of gene regulation in bacteria.
    Georg J; Hess WR
    Microbiol Mol Biol Rev; 2011 Jun; 75(2):286-300. PubMed ID: 21646430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pervasive transcription: detecting functional RNAs in bacteria.
    Lybecker M; Bilusic I; Raghavan R
    Transcription; 2014; 5(4):e944039. PubMed ID: 25483405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unaltered stability of newly synthesized RNA in strains of Escherichia coli missing a ribonuclease specific for double-stranded RNA.
    Apirion D; Watson N
    Mol Gen Genet; 1975; 136(4):317-26. PubMed ID: 16094999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae.
    Pines O; Yoon HJ; Inouye M
    J Bacteriol; 1988 Jul; 170(7):2989-93. PubMed ID: 3290193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNase III and RNase E Influence Posttranscriptional Regulatory Networks Involved in Virulence Factor Production, Metabolism, and Regulatory RNA Processing in Bordetella pertussis.
    Ifill G; Blimkie T; Lee AH; Mackie GA; Chen Q; Stibitz S; Hancock REW; Fernandez RC
    mSphere; 2021 Aug; 6(4):e0065021. PubMed ID: 34406853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.
    Conway T; Creecy JP; Maddox SM; Grissom JE; Conkle TL; Shadid TM; Teramoto J; San Miguel P; Shimada T; Ishihama A; Mori H; Wanner BL
    mBio; 2014 Jul; 5(4):e01442-14. PubMed ID: 25006232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribonuclease III mechanisms of double-stranded RNA cleavage.
    Nicholson AW
    Wiley Interdiscip Rev RNA; 2014; 5(1):31-48. PubMed ID: 24124076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA Sequencing Identifies New RNase III Cleavage Sites in
    Gordon GC; Cameron JC; Pfleger BF
    mBio; 2017 Mar; 8(2):. PubMed ID: 28351917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-Loops in Fission Yeast.
    Hartono SR; Malapert A; Legros P; Bernard P; Chédin F; Vanoosthuyse V
    J Mol Biol; 2018 Feb; 430(3):272-284. PubMed ID: 29289567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular mechanism of dsRNA processing by a bacterial Dicer.
    Jin L; Song H; Tropea JE; Needle D; Waugh DS; Gu S; Ji X
    Nucleic Acids Res; 2019 May; 47(9):4707-4720. PubMed ID: 30916338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli.
    Altuvia Y; Bar A; Reiss N; Karavani E; Argaman L; Margalit H
    Nucleic Acids Res; 2018 Nov; 46(19):10380-10394. PubMed ID: 30113670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Heterocyst-Specific Antisense RNA Contributes to Metabolic Reprogramming in Nostoc sp. PCC 7120.
    Olmedo-Verd E; Brenes-Álvarez M; Vioque A; Muro-Pastor AM
    Plant Cell Physiol; 2019 Aug; 60(8):1646-1655. PubMed ID: 31093664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Profiling the in vivo RNA interactome associated with the endoribonuclease RNase III in Staphylococcus aureus.
    Wu W; Pang CNI; Tree JJ; Mediati DG
    Methods Enzymol; 2023; 692():299-324. PubMed ID: 37925184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs.
    Behrens S; Widder S; Mannala GK; Qing X; Madhugiri R; Kefer N; Abu Mraheil M; Rattei T; Hain T
    PLoS One; 2014; 9(2):e83979. PubMed ID: 24498259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noncatalytic assembly of ribonuclease III with double-stranded RNA.
    Blaszczyk J; Gan J; Tropea JE; Court DL; Waugh DS; Ji X
    Structure; 2004 Mar; 12(3):457-66. PubMed ID: 15016361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNase III controls mltD mRNA degradation in Escherichia coli.
    Lim B; Ahn S; Sim M; Lee K
    Curr Microbiol; 2014 Apr; 68(4):518-23. PubMed ID: 24343175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA interference is mediated by 21- and 22-nucleotide RNAs.
    Elbashir SM; Lendeckel W; Tuschl T
    Genes Dev; 2001 Jan; 15(2):188-200. PubMed ID: 11157775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system.
    Yin G; Sun Z; Liu N; Zhang L; Song Y; Zhu C; Wen F
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):323-33. PubMed ID: 19330324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.