These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24453212)

  • 41. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803.
    Sakurai I; Stazic D; Eisenhut M; Vuorio E; Steglich C; Hess WR; Aro EM
    Plant Physiol; 2012 Oct; 160(2):1000-10. PubMed ID: 22858634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain.
    Sun W; Jun E; Nicholson AW
    Biochemistry; 2001 Dec; 40(49):14976-84. PubMed ID: 11732918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Model-Based Design of Synthetic Antisense RNA for Predictable Gene Repression.
    Moon TS
    Methods Mol Biol; 2022; 2518():111-124. PubMed ID: 35666442
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The essential function of B. subtilis RNase III is to silence foreign toxin genes.
    Durand S; Gilet L; Condon C
    PLoS Genet; 2012; 8(12):e1003181. PubMed ID: 23300471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Establishing a Multivariate Model for Predictable Antisense RNA-Mediated Repression.
    Lee YJ; Kim SJ; Amrofell MB; Moon TS
    ACS Synth Biol; 2019 Jan; 8(1):45-56. PubMed ID: 30517781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of Bacterial Fitness and Virulence Through Antisense RNAs.
    Millar JA; Raghavan R
    Front Cell Infect Microbiol; 2020; 10():596277. PubMed ID: 33747974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation.
    Jen CH; Michalopoulos I; Westhead DR; Meyer P
    Genome Biol; 2005; 6(6):R51. PubMed ID: 15960803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antisense transcription and its roles in adaption to environmental stress in
    Zhao L; Tabari E; Rong H; Dong X; Xue D; Su Z
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993172
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HnRNPK maintains single strand RNA through controlling double-strand RNA in mammalian cells.
    Mahale S; Setia M; Prajapati B; Subhash S; Yadav MP; Thankaswamy Kosalai S; Deshpande A; Kuchlyan J; Di Marco M; Westerlund F; Wilhelmsson LM; Kanduri C; Kanduri M
    Nat Commun; 2022 Aug; 13(1):4865. PubMed ID: 36038571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of antisense RNAs in evolution of yeast regulatory complexity.
    Lin CH; Tsai ZT; Wang D
    Genomics; 2013; 102(5-6):484-90. PubMed ID: 24200499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial antisense RNAs are mainly the product of transcriptional noise.
    Lloréns-Rico V; Cano J; Kamminga T; Gil R; Latorre A; Chen WH; Bork P; Glass JI; Serrano L; Lluch-Senar M
    Sci Adv; 2016 Mar; 2(3):e1501363. PubMed ID: 26973873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of Design Rules for Reliable Antisense RNA Behavior in E. coli.
    Hoynes-O'Connor A; Moon TS
    ACS Synth Biol; 2016 Dec; 5(12):1441-1454. PubMed ID: 27434774
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.
    Sesto N; Wurtzel O; Archambaud C; Sorek R; Cossart P
    Nat Rev Microbiol; 2013 Feb; 11(2):75-82. PubMed ID: 23268228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus.
    Imrat ; Labala RK; Behara AK; Jeyaram K
    Funct Integr Genomics; 2022 Dec; 23(1):10. PubMed ID: 36542169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.
    Meng W; Nicholson RH; Nathania L; Pertzev AV; Nicholson AW
    Methods Enzymol; 2008; 447():119-29. PubMed ID: 19161841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A forward genetic screen to study mammalian RNA interference: essential role of RNase IIIa domain of Dicer1 in 3' strand cleavage of dsRNA in vivo.
    Ohishi K; Nakano T
    FEBS J; 2012 Mar; 279(5):832-43. PubMed ID: 22221880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli.
    Inada T; Nakamura Y
    Biochimie; 1995; 77(4):294-302. PubMed ID: 8589060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double-stranded RNA-mediated gene silencing in fission yeast.
    Raponi M; Arndt GM
    Nucleic Acids Res; 2003 Aug; 31(15):4481-9. PubMed ID: 12888508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.