These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24453221)

  • 41. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer.
    Kenyon CP; Roth RL; van der Westhuyzen CW; Parkinson CJ
    BMC Res Notes; 2012 Mar; 5():131. PubMed ID: 22397702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radiolabeling of the rat P2X4 purinoceptor: evidence for allosteric interactions of purinoceptor antagonists and monovalent cations with P2X purinoceptors.
    Michel AD; Miller KJ; Lundström K; Buell GN; Humphrey PP
    Mol Pharmacol; 1997 Mar; 51(3):524-32. PubMed ID: 9058609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The NTP phosphate donor in kinase reactions: is ATP a monopolist?
    Shugar D
    Acta Biochim Pol; 1996; 43(1):9-23. PubMed ID: 8790708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2.
    Wu H; Zheng Y; Wang ZX
    Biochemistry; 2003 Feb; 42(4):1129-39. PubMed ID: 12549935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochemical characterization of recombinant hepatitis C virus nonstructural protein 4B: evidence for ATP/GTP hydrolysis and adenylate kinase activity.
    Thompson AA; Zou A; Yan J; Duggal R; Hao W; Molina D; Cronin CN; Wells PA
    Biochemistry; 2009 Feb; 48(5):906-16. PubMed ID: 19146391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system.
    Janiak-Spens F; Cook PF; West AH
    Biochemistry; 2005 Jan; 44(1):377-86. PubMed ID: 15628880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phos-tag SDS-PAGE resolves agonist- and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts.
    Qiu W; Steinberg SF
    J Mol Cell Cardiol; 2016 Oct; 99():14-22. PubMed ID: 27515283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleotide-dependent oligomerization of ClpB from Escherichia coli.
    Zolkiewski M; Kessel M; Ginsburg A; Maurizi MR
    Protein Sci; 1999 Sep; 8(9):1899-903. PubMed ID: 10493591
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE.
    Okawara Y; Hirano H; Kimura A; Sato N; Hayashi Y; Osada M; Kawakami T; Ootake N; Kinoshita E; Fujita K
    J Proteomics; 2021 Jan; 231():104005. PubMed ID: 33035715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. History of Phos-tag technology for phosphoproteomics.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    J Proteomics; 2022 Feb; 252():104432. PubMed ID: 34818585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial Two Component Systems: Overexpression and Purification: In Vitro and In Vivo Inhibitor Screens.
    Dietrich A; Gajdiss M; Türck M; Monk I; Bierbaum G
    Methods Mol Biol; 2023; 2601():313-333. PubMed ID: 36445592
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of Protein Phosphorylation Using Phos-Tag Gels.
    Nagy Z; Comer S; Smolenski A
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e64. PubMed ID: 30044546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A semisynthetic epitope for kinase substrates.
    Allen JJ; Li M; Brinkworth CS; Paulson JL; Wang D; Hübner A; Chou WH; Davis RJ; Burlingame AL; Messing RO; Katayama CD; Hedrick SM; Shokat KM
    Nat Methods; 2007 Jun; 4(6):511-6. PubMed ID: 17486086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phos-Tag Fluorescent Gel Staining for the Quantitative Detection of His- and Asp-Phosphorylated Proteins.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Methods Mol Biol; 2021; 2261():73-78. PubMed ID: 33420985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and properties of diastereoisomers of adenosine 5'-(O-1-thiotriphosphate) and adenosine 5'-(O-2-thiotriphosphate).
    Eckstein F; Goody RS
    Biochemistry; 1976 Apr; 15(8):1685-91. PubMed ID: 178353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thiophosphorylation and phosphorylation of saponin-permeabilized cultured chromaffin cells.
    Brooks JC; Brooks MH
    Neurochem Int; 1987; 11(1):31-8. PubMed ID: 20501139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of protein phosphorylation using Phos-tag gels.
    O'Donoghue L; Smolenski A
    J Proteomics; 2022 May; 259():104558. PubMed ID: 35283355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A method for profiling the phosphorylation state of tyrosine protein kinases.
    Uezato Y; Kameshita I; Morisawa K; Sakamoto S; Kinoshita E; Kinoshita-Kikuta E; Koike T; Sugiyama Y
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):71-75. PubMed ID: 29753089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Bioorganometallic Approach to Study Histidine Kinase Autophosphorylations.
    Wang N; She Z; Ingar Z; Martic S; Kraatz HB
    Chemistry; 2017 Mar; 23(13):3152-3158. PubMed ID: 28081291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE.
    Sugiyama Y; Katayama S; Kameshita I; Morisawa K; Higuchi T; Todaka H; Kinoshita E; Kinoshita-Kikuta E; Koike T; Taniguchi T; Sakamoto S
    MethodsX; 2015; 2():469-74. PubMed ID: 26844212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.