These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24453312)

  • 41. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.
    Honnuraiah S; Narayanan R
    PLoS One; 2013; 8(2):e55590. PubMed ID: 23390543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulations of dendritic Ca
    Yi G; Wei X; Wang J; Deng B; Che Y
    Neural Netw; 2019 Feb; 110():8-18. PubMed ID: 30471543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dendritic electrogenesis in rat hippocampal CA1 pyramidal neurons: functional aspects of Na+ and Ca2+ currents in apical dendrites.
    Andreasen M; Nedergaard S
    Hippocampus; 1996; 6(1):79-95. PubMed ID: 8878746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational simulation of the input-output relationship in hippocampal pyramidal cells.
    Li X; Ascoli GA
    J Comput Neurosci; 2006 Oct; 21(2):191-209. PubMed ID: 16871350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells.
    Yue C; Yaari Y
    J Neurophysiol; 2006 Jun; 95(6):3480-95. PubMed ID: 16495357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit.
    Srinivas KV; Buss EW; Sun Q; Santoro B; Takahashi H; Nicholson DA; Siegelbaum SA
    J Neurosci; 2017 Mar; 37(12):3276-3293. PubMed ID: 28213444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study.
    Paré D; Lang EJ; Destexhe A
    Neuroscience; 1998 May; 84(2):377-402. PubMed ID: 9539211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro.
    Hansen AK; Nedergaard S; Andreasen M
    J Neurophysiol; 2014 Aug; 112(3):631-43. PubMed ID: 25252335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Serotonin modulates spike backpropagation and associated [Ca2+]i changes in the apical dendrites of hippocampal CA1 pyramidal neurons.
    Sandler VM; Ross WN
    J Neurophysiol; 1999 Jan; 81(1):216-24. PubMed ID: 9914282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.
    Poolos NP; Johnston D
    J Neurosci; 1999 Jul; 19(13):5205-12. PubMed ID: 10377332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Passive normalization of synaptic integration influenced by dendritic architecture.
    Jaffe DB; Carnevale NT
    J Neurophysiol; 1999 Dec; 82(6):3268-85. PubMed ID: 10601459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical detection of dendritic spike initiation in hippocampal CA1 pyramidal neurons.
    Kasuga A; Enoki R; Hashimoto Y; Akiyama H; Kawamura Y; Inoue M; Kudo Y; Miyakawa H
    Neuroscience; 2003; 118(4):899-907. PubMed ID: 12732236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A branching dendritic model of a rodent CA3 pyramidal neurone.
    Traub RD; Jefferys JG; Miles R; Whittington MA; Tóth K
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):79-95. PubMed ID: 7853251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.
    Kim J; Wei DS; Hoffman DA
    J Physiol; 2005 Nov; 569(Pt 1):41-57. PubMed ID: 16141270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active properties of neuronal dendrites.
    Johnston D; Magee JC; Colbert CM; Cristie BR
    Annu Rev Neurosci; 1996; 19():165-86. PubMed ID: 8833440
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tonic current through GABAA receptors and hyperpolarization-activated cyclic nucleotide-gated channels modulate resonance properties of rat subicular pyramidal neurons.
    Sah N; Sikdar SK
    Eur J Neurosci; 2014 Jul; 40(1):2241-54. PubMed ID: 24720274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of Frequency Preference in Heterogeneous Populations of Theta-resonant Neurons.
    Vera J; Pereira U; Reynaert B; Bacigalupo J; Sanhueza M
    Neuroscience; 2020 Feb; 426():13-32. PubMed ID: 31785354
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons.
    Migliore M; Messineo L; Ferrante M
    J Comput Neurosci; 2004; 16(1):5-13. PubMed ID: 14707540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons.
    Vaidya SP; Johnston D
    Nat Neurosci; 2013 Dec; 16(12):1812-20. PubMed ID: 24185428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.