BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2445380)

  • 1. Effects of intracellular Ca2+ and proteolytic digestion of the membrane skeleton on the mechanical properties of the red blood cell membrane.
    Shields M; La Celle P; Waugh RE; Scholz M; Peters R; Passow H
    Biochim Biophys Acta; 1987 Nov; 905(1):181-94. PubMed ID: 2445380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts.
    Lepke S; Passow H
    Biochim Biophys Acta; 1976 Dec; 455(2):353-70. PubMed ID: 999920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions.
    Takakuwa Y; Mohandas N
    J Clin Invest; 1988 Aug; 82(2):394-400. PubMed ID: 3403710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of preparative procedures on the membrane viscoelasticity of human red cell ghosts.
    Nash GB; Tran-Son-Tay R; Meiselman HJ
    Biochim Biophys Acta; 1986 Feb; 855(1):105-14. PubMed ID: 3942734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the cation selectivity filter and the calcium receptor of the Ca-stimulated K channel in resealed ghosts of human red blood cells by low levels of incorporated trypsin.
    Wood PG; Mueller H
    Eur J Biochem; 1984 May; 141(1):91-5. PubMed ID: 6327312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of red cell cytoskeleton.
    Nakao M; Jinbu Y; Sato S; Ishigami Y; Nakao T; Ito-Ueno E; Wake K
    Biomed Biochim Acta; 1987; 46(2-3):S5-9. PubMed ID: 3593316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of ankyrin in shape and deformability change of human erythrocyte ghosts.
    Jinbu Y; Sato S; Nakao T; Nakao M; Tsukita S; Tsukita S; Ishikawa H
    Biochim Biophys Acta; 1984 Jun; 773(2):237-45. PubMed ID: 6234023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability of isolated red blood cell membranes.
    Heath BP; Mohandas N; Wyatt JL; Shohet SB
    Biochim Biophys Acta; 1982 Oct; 691(2):211-9. PubMed ID: 6814487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate of rupture and reattachment of the band 3-ankyrin bridge on the human erythrocyte membrane.
    Anong WA; Weis TL; Low PS
    J Biol Chem; 2006 Aug; 281(31):22360-22366. PubMed ID: 16762928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. II. Formation of membrane leaks in ghost membranes after limited proteolysis of skeletal proteins by trypsin.
    Klonk S; Deuticke B
    Biochim Biophys Acta; 1992 Apr; 1106(1):137-42. PubMed ID: 1581326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inherited membrane abnormalities on the viscoelastic properties of erythrocyte membrane.
    Waugh RE
    Biophys J; 1987 Mar; 51(3):363-9. PubMed ID: 2952176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling the shape of the skeleton in the intact red cell.
    Khodadad JK; Waugh RE; Podolski JL; Josephs R; Steck TL
    Biophys J; 1996 Feb; 70(2):1036-44. PubMed ID: 8789122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological evaluation of pathological, perturbed normal and reconstituted red cell membranes.
    Marík T; Plásek J; Brabec V
    Biomed Biochim Acta; 1990; 49(2-3):S334-9. PubMed ID: 2386524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in proteolytic susceptibility of human erythrocyte membrane proteins during red blood cell aging.
    Gaczyńska M
    Cytobios; 1992; 72(290-291):197-200. PubMed ID: 1298582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins.
    Klonk S; Deuticke B
    Biochim Biophys Acta; 1992 Apr; 1106(1):143-50. PubMed ID: 1581327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton.
    Tomishige M; Sako Y; Kusumi A
    J Cell Biol; 1998 Aug; 142(4):989-1000. PubMed ID: 9722611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
    Fischer TM; Korzeniewski R
    Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.