These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2445380)
1. Effects of intracellular Ca2+ and proteolytic digestion of the membrane skeleton on the mechanical properties of the red blood cell membrane. Shields M; La Celle P; Waugh RE; Scholz M; Peters R; Passow H Biochim Biophys Acta; 1987 Nov; 905(1):181-94. PubMed ID: 2445380 [TBL] [Abstract][Full Text] [Related]
2. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Lepke S; Passow H Biochim Biophys Acta; 1976 Dec; 455(2):353-70. PubMed ID: 999920 [TBL] [Abstract][Full Text] [Related]
3. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions. Takakuwa Y; Mohandas N J Clin Invest; 1988 Aug; 82(2):394-400. PubMed ID: 3403710 [TBL] [Abstract][Full Text] [Related]
4. Influence of preparative procedures on the membrane viscoelasticity of human red cell ghosts. Nash GB; Tran-Son-Tay R; Meiselman HJ Biochim Biophys Acta; 1986 Feb; 855(1):105-14. PubMed ID: 3942734 [TBL] [Abstract][Full Text] [Related]
5. Modification of the cation selectivity filter and the calcium receptor of the Ca-stimulated K channel in resealed ghosts of human red blood cells by low levels of incorporated trypsin. Wood PG; Mueller H Eur J Biochem; 1984 May; 141(1):91-5. PubMed ID: 6327312 [TBL] [Abstract][Full Text] [Related]
6. Structure and function of red cell cytoskeleton. Nakao M; Jinbu Y; Sato S; Ishigami Y; Nakao T; Ito-Ueno E; Wake K Biomed Biochim Acta; 1987; 46(2-3):S5-9. PubMed ID: 3593316 [TBL] [Abstract][Full Text] [Related]
7. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477 [TBL] [Abstract][Full Text] [Related]
8. The role of ankyrin in shape and deformability change of human erythrocyte ghosts. Jinbu Y; Sato S; Nakao T; Nakao M; Tsukita S; Tsukita S; Ishikawa H Biochim Biophys Acta; 1984 Jun; 773(2):237-45. PubMed ID: 6234023 [TBL] [Abstract][Full Text] [Related]
10. Rate of rupture and reattachment of the band 3-ankyrin bridge on the human erythrocyte membrane. Anong WA; Weis TL; Low PS J Biol Chem; 2006 Aug; 281(31):22360-22366. PubMed ID: 16762928 [TBL] [Abstract][Full Text] [Related]
11. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. II. Formation of membrane leaks in ghost membranes after limited proteolysis of skeletal proteins by trypsin. Klonk S; Deuticke B Biochim Biophys Acta; 1992 Apr; 1106(1):137-42. PubMed ID: 1581326 [TBL] [Abstract][Full Text] [Related]
12. Effects of inherited membrane abnormalities on the viscoelastic properties of erythrocyte membrane. Waugh RE Biophys J; 1987 Mar; 51(3):363-9. PubMed ID: 2952176 [TBL] [Abstract][Full Text] [Related]
13. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Engelhardt H; Sackmann E Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837 [TBL] [Abstract][Full Text] [Related]
14. Remodeling the shape of the skeleton in the intact red cell. Khodadad JK; Waugh RE; Podolski JL; Josephs R; Steck TL Biophys J; 1996 Feb; 70(2):1036-44. PubMed ID: 8789122 [TBL] [Abstract][Full Text] [Related]
15. Rheological evaluation of pathological, perturbed normal and reconstituted red cell membranes. Marík T; Plásek J; Brabec V Biomed Biochim Acta; 1990; 49(2-3):S334-9. PubMed ID: 2386524 [TBL] [Abstract][Full Text] [Related]
16. Changes in proteolytic susceptibility of human erythrocyte membrane proteins during red blood cell aging. Gaczyńska M Cytobios; 1992; 72(290-291):197-200. PubMed ID: 1298582 [TBL] [Abstract][Full Text] [Related]
17. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins. Klonk S; Deuticke B Biochim Biophys Acta; 1992 Apr; 1106(1):143-50. PubMed ID: 1581327 [TBL] [Abstract][Full Text] [Related]
18. An elastic network model based on the structure of the red blood cell membrane skeleton. Hansen JC; Skalak R; Chien S; Hoger A Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194 [TBL] [Abstract][Full Text] [Related]
19. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. Tomishige M; Sako Y; Kusumi A J Cell Biol; 1998 Aug; 142(4):989-1000. PubMed ID: 9722611 [TBL] [Abstract][Full Text] [Related]
20. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow. Fischer TM; Korzeniewski R Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]