These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24453864)

  • 1. Fabrication and evaluation of porous beta-tricalcium phosphate/hydroxyapatite (60/40) composite as a bone graft extender using rat calvarial bone defect model.
    Lee JH; Ryu MY; Baek HR; Lee KM; Seo JH; Lee HK
    ScientificWorldJournal; 2013; 2013():481789. PubMed ID: 24453864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation property of beta-tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with Bio-Oss Collagen® in a rat critical-size defect model.
    Kato E; Lemler J; Sakurai K; Yamada M
    Clin Implant Dent Relat Res; 2014 Apr; 16(2):202-11. PubMed ID: 22809239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate.
    Shirasu N; Ueno T; Hirata Y; Hirata A; Kagawa T; Kanou M; Sawaki M; Wakimoto M; Ota A; Imura H; Matsumura T; Yamada T; Yamachika E; Sano K
    Acta Histochem; 2010 May; 112(3):270-7. PubMed ID: 19403161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of porous beta-tricalcium phosphate-based ceramics used as an E. coli-derived rhBMP-2 carrier for bone regeneration.
    Lee JH; Ryu MY; Baek HR; Lee KM; Seo JH; Lee HK; Ryu HS
    J Mater Sci Mater Med; 2013 Sep; 24(9):2117-27. PubMed ID: 23728522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture.
    Kamal M; Andersson L; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Gabato S; Hölzle F; Kessler P; Lethaus B
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):773-782. PubMed ID: 30253039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided Bone Regeneration in Standardized Calvarial Defects in Rats Using Bio-Oss and β-Tricalcium Phosphate with Adjunct Platelet-Derived Growth Factor Therapy: A Real-Time In Vivo Microcomputed Tomographic, Biomechanical, and Histologic Analysis.
    Al-Askar M; Javed F; Al-Hezaimi K; Al-Hamdan KS; Ramalingam S; Aldahmash A; Nooh N; Al-Rasheed A
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s61-73. PubMed ID: 27031635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics.
    Nakamura S; Kobayashi T; Nakamura M; Itoh S; Yamashita K
    J Biomed Mater Res A; 2010 Jan; 92(1):267-75. PubMed ID: 19180523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octacalcium Phosphate/Gelatin Composite (OCP/Gel) Enhances Bone Repair in a Critical-sized Transcortical Femoral Defect Rat Model.
    Hamada S; Mori Y; Shiwaku Y; Hamai R; Tsuchiya K; Baba K; Oizumi I; Kanabuchi R; Miyatake N; Aizawa T; Suzuki O
    Clin Orthop Relat Res; 2022 Oct; 480(10):2043-2055. PubMed ID: 35638896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation.
    Carrel JP; Wiskott A; Moussa M; Rieder P; Scherrer S; Durual S
    Clin Oral Implants Res; 2016 Jan; 27(1):55-62. PubMed ID: 25350936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria.
    Hwang JW; Park JS; Lee JS; Jung UW; Kim CS; Cho KS; Lee YK; Choi SH
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2044-52. PubMed ID: 22865716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect.
    Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O
    J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone formation using β-tricalcium phosphate/carboxymethyl-chitin composite scaffold in rat calvarial defects.
    Taniyama K; Shirakata Y; Yoshimoto T; Takeuchi N; Yoshihara Y; Noguchi K
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Dec; 116(6):e450-6. PubMed ID: 22901650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of porous alpha-tricalcium phosphate granules with heparin enhanced their early osteogenic capability in a rat calvarial defect model.
    Takeda Y; Honda Y; Kakinoki S; Yamaoka T; Baba S
    Dent Mater J; 2018 Jul; 37(4):575-581. PubMed ID: 29491202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic effect of tricalcium phosphate substituted by magnesium associated with Genderm® membrane in rat calvarial defect model.
    Costa NM; Yassuda DH; Sader MS; Fernandes GV; Soares GD; Granjeiro JM
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():63-71. PubMed ID: 26838825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capability of new bone formation with a mixture of hydroxyapatite and beta-tricalcium phosphate granules.
    Sanda M; Shiota M; Fujii M; Kon K; Fujimori T; Kasugai S
    Clin Oral Implants Res; 2015 Dec; 26(12):1369-74. PubMed ID: 25156136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.