These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24454553)

  • 1. Evolutionary potential of marine phytoplankton under ocean acidification.
    Collins S; Rost B; Rynearson TA
    Evol Appl; 2014 Jan; 7(1):140-55. PubMed ID: 24454553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Will life find a way? Evolution of marine species under global change.
    Calosi P; De Wit P; Thor P; Dupont S
    Evol Appl; 2016 Oct; 9(9):1035-1042. PubMed ID: 27695513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity predicts evolution in a marine alga.
    Schaum CE; Collins S
    Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25209938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evolution meets marine phytoplankton.
    Reusch TB; Boyd PW
    Evolution; 2013 Jul; 67(7):1849-59. PubMed ID: 23815643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs.
    Zhong J; Guo Y; Liang Z; Huang Q; Lu H; Pan J; Li P; Jin P; Xia J
    Sci Total Environ; 2021 Jun; 771():145167. PubMed ID: 33736151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems.
    Sauterey B; Ward BA; Follows MJ; Bowler C; Claessen D
    J Plankton Res; 2015 Jan; 37(1):28-47. PubMed ID: 25852217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection Experiments in the Sea: What Can Experimental Evolution Tell Us About How Marine Life Will Respond to Climate Change?
    Kelly MW; Griffiths JS
    Biol Bull; 2021 Aug; 241(1):30-42. PubMed ID: 34436966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global pattern of thermal adaptation in marine phytoplankton.
    Thomas MK; Kremer CT; Klausmeier CA; Litchman E
    Science; 2012 Nov; 338(6110):1085-8. PubMed ID: 23112294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.
    Lohbeck KT; Riebesell U; Reusch TB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.
    Schlüter L; Lohbeck KT; Gröger JP; Riebesell U; Reusch TB
    Sci Adv; 2016 Jul; 2(7):e1501660. PubMed ID: 27419227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary change during experimental ocean acidification.
    Pespeni MH; Sanford E; Gaylord B; Hill TM; Hosfelt JD; Jaris HK; LaVigne M; Lenz EA; Russell AD; Young MK; Palumbi SR
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6937-42. PubMed ID: 23569232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations.
    Lohbeck KT; Riebesell U; Collins S; Reusch TB
    Evolution; 2013 Jul; 67(7):1892-900. PubMed ID: 23815647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical adaptation to ocean acidification.
    Stillman JH; Paganini AW
    J Exp Biol; 2015 Jun; 218(Pt 12):1946-55. PubMed ID: 26085671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification.
    Munday PL
    Biol Lett; 2017 Sep; 13(9):. PubMed ID: 28877955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores.
    Irie T; Bessho K; Findlay HS; Calosi P
    PLoS One; 2010 Oct; 5(10):e13436. PubMed ID: 20976167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warming and Ocean Acidification Effects on Phytoplankton--From Species Shifts to Size Shifts within Species in a Mesocosm Experiment.
    Sommer U; Paul C; Moustaka-Gouni M
    PLoS One; 2015; 10(5):e0125239. PubMed ID: 25993440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ocean acidification on Antarctic marine organisms: A meta-analysis.
    Hancock AM; King CK; Stark JS; McMinn A; Davidson AT
    Ecol Evol; 2020 May; 10(10):4495-4514. PubMed ID: 32489613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictable ecological response to rising CO
    Pardew J; Blanco Pimentel M; Low-Decarie E
    Ecol Evol; 2018 Apr; 8(8):4292-4302. PubMed ID: 29721298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities.
    Lorrain A; Pethybridge H; Cassar N; Receveur A; Allain V; Bodin N; Bopp L; Choy CA; Duffy L; Fry B; Goñi N; Graham BS; Hobday AJ; Logan JM; Ménard F; Menkes CE; Olson RJ; Pagendam DE; Point D; Revill AT; Somes CJ; Young JW
    Glob Chang Biol; 2020 Feb; 26(2):458-470. PubMed ID: 31578765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting evolutionary responses to climate change in the sea.
    Munday PL; Warner RR; Monro K; Pandolfi JM; Marshall DJ
    Ecol Lett; 2013 Dec; 16(12):1488-500. PubMed ID: 24119205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.