These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 2445500)
1. Introduction and metabolism of pentose and hexose phosphates in permeabilized Morris hepatoma 5123TC cells. Arora KK; Williams JF Cell Biochem Funct; 1987 Oct; 5(4):289-300. PubMed ID: 2445500 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and quantitative contribution of the pentose pathway to the glucose metabolism of Morris hepatoma 5123C. Arora KK; Longenecker JP; Williams JF Int J Biochem; 1987; 19(2):133-46. PubMed ID: 3569642 [TBL] [Abstract][Full Text] [Related]
3. "Pyruvate recycling" and its influence on the estimation of the pentose pathway in intact liver and Morris hepatoma 5123TC cells. Arora KK; Smith R; Williams JF Int J Biochem; 1987; 19(2):147-58. PubMed ID: 3569643 [TBL] [Abstract][Full Text] [Related]
5. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway. Williams JF; Blackmore PF Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092 [TBL] [Abstract][Full Text] [Related]
6. Evidence that aldolase and D-arabinose 5-phosphate are components of pentose pathway reactions in liver in vitro. Bleakley PA; Arora KK; Williams JF Biochem Int; 1984 Apr; 8(4):491-500. PubMed ID: 6541043 [TBL] [Abstract][Full Text] [Related]
7. New reaction sequences for the non-oxidative pentose phosphate pathway. Williams JF; Blackmore PF; Clark MG Biochem J; 1978 Oct; 176(1):257-82. PubMed ID: 728110 [TBL] [Abstract][Full Text] [Related]
8. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum. Roth EF; Ruprecht RM; Schulman S; Vanderberg J; Olson JA J Clin Invest; 1986 Apr; 77(4):1129-35. PubMed ID: 2420826 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. II. Erythrose 4-phosphate as intermediate and rate regulator in the interconversion of ribose 5-phosphate and hexose 6-phosphate. DISCHE Z; IGALS D Arch Biochem Biophys; 1961 May; 93():201-10. PubMed ID: 13723069 [No Abstract] [Full Text] [Related]
10. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach. Williams JF; MacLeod JK Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443 [TBL] [Abstract][Full Text] [Related]
11. Phosphoribosyl pyrophosphate and phosphoribosyl pyrophosphate synthetase in rat mammary gland. Changes in the lactation cycle and effects of diabetes, insulin and phenazine methosulphate. Kunjara S; Sochor M; Salih N; McLean P; Greenbaum AL Biochem J; 1986 Sep; 238(2):553-9. PubMed ID: 2432883 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. 1. Sedohetulose and triose phosphates as intermediates in the conversion of ribose 5-phosphate to hexose 6-phosphate in human hemolyzates. DISCHE Z; SHIGEURA HT; LANDSBERG E Arch Biochem Biophys; 1960 Jul; 89():123-33. PubMed ID: 13816919 [No Abstract] [Full Text] [Related]
13. Regulation of de novo purine synthesis in human and rat tissue: role of oxidative pentose phosphate pathway activity and of ribose-5-phosphate and phosphoribosylpyrophosphate availability. Sperling O; Boer P; Lipstein B; Kupfer B; Brosh S; Zoref E; Bashkin P; de Vries A Adv Exp Med Biol; 1977; 76A():481-7. PubMed ID: 193377 [No Abstract] [Full Text] [Related]
14. Target metabolomics revealed complementary roles of hexose- and pentose-phosphates in the regulation of carbohydrate-dependent gene expression. Diaz-Moralli S; Ramos-Montoya A; Marin S; Fernandez-Alvarez A; Casado M; Cascante M Am J Physiol Endocrinol Metab; 2012 Jul; 303(2):E234-42. PubMed ID: 22569070 [TBL] [Abstract][Full Text] [Related]
15. Hepatic phosphoribosyl pyrophosphate concentration. Regulation by the oxidative pentose phosphate pathway and cellular energy status. Kunjara S; Sochor M; Ali SA; Greenbaum AL; McLean P Biochem J; 1987 May; 244(1):101-8. PubMed ID: 2444209 [TBL] [Abstract][Full Text] [Related]
16. Transport of D-arabinose-5-phosphate and D-sedoheptulose-7-phosphate by the hexose phosphate transport system of Salmonella typhimurium. Eidels L; Rick PD; Stimler NP; Osborn MJ J Bacteriol; 1974 Jul; 119(1):138-43. PubMed ID: 4600697 [TBL] [Abstract][Full Text] [Related]
17. The phosphogluconate pathway and synthesis of 5-phosphoribosyl-1-pyrophosphate in human fibroblasts. Raivio KO; Lazar CS; Krumholz HR; Becker MA Biochim Biophys Acta; 1981 Nov; 678(1):51-7. PubMed ID: 6171305 [TBL] [Abstract][Full Text] [Related]
18. 14C labelling of octulose bisphosphates by L-type pentose pathway reactions in liver in situ and in vitro. Williams JF; Clark MG; Arora KK Biochem Int; 1985 Jul; 11(1):97-106. PubMed ID: 4038320 [TBL] [Abstract][Full Text] [Related]
19. Role of orthophosphate concentration in the regulation of ribose phosphate synthesis and purine metabolism in Ehrlich ascites tumor cells. Barankiewicz J; Battell ML; Henderson JF Can J Biochem; 1977 Aug; 55(8):834-40. PubMed ID: 560902 [TBL] [Abstract][Full Text] [Related]
20. The biochemistry of sugars. Horecker BL Int Z Vitam Ernahrungsforsch Beih; 1976; 15():1-21. PubMed ID: 182650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]