BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24455437)

  • 1. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry.
    Bencherif SA; Braschler TM; Renaud P
    J Periodontal Implant Sci; 2013 Dec; 43(6):251-61. PubMed ID: 24455437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the porosity and microarchitecture of hydrogels for tissue engineering.
    Annabi N; Nichol JW; Zhong X; Ji C; Koshy S; Khademhosseini A; Dehghani F
    Tissue Eng Part B Rev; 2010 Aug; 16(4):371-83. PubMed ID: 20121414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for
    Lu D; Zeng Z; Geng Z; Guo C; Pei D; Zhang J; Yu S
    Biomed Mater; 2022 Jan; 17(2):. PubMed ID: 34996058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.
    Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX
    Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroporous click-elastin-like hydrogels for tissue engineering applications.
    Fernández-Colino A; Wolf F; Keijdener H; Rütten S; Schmitz-Rode T; Jockenhoevel S; Rodríguez-Cabello JC; Mela P
    Mater Sci Eng C Mater Biol Appl; 2018 Jul; 88():140-147. PubMed ID: 29636129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for regenerative medicine applications.
    Griveau L; Lafont M; le Goff H; Drouglazet C; Robbiani B; Berthier A; Sigaudo-Roussel D; Latif N; Visage CL; Gache V; Debret R; Weiss P; Sohier J
    Acta Biomater; 2022 Mar; 140():324-337. PubMed ID: 34843951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.
    Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P
    Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels.
    Somo SI; Akar B; Bayrak ES; Larson JC; Appel AA; Mehdizadeh H; Cinar A; Brey EM
    Tissue Eng Part C Methods; 2015 Aug; 21(8):773-85. PubMed ID: 25603533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation.
    Gehlen DB; Jürgens N; Omidinia-Anarkoli A; Haraszti T; George J; Walther A; Ye H; De Laporte L
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000191. PubMed ID: 32783361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
    Murphy WL; Dennis RG; Kileny JL; Mooney DJ
    Tissue Eng; 2002 Feb; 8(1):43-52. PubMed ID: 11886653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric Scaffolds Used in Dental Pulp Regeneration by Tissue Engineering Approach.
    Sugiaman VK; Jeffrey ; Naliani S; Pranata N; Djuanda R; Saputri RI
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.
    Shirbin SJ; Karimi F; Chan NJ; Heath DE; Qiao GG
    Biomacromolecules; 2016 Sep; 17(9):2981-91. PubMed ID: 27472153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Hydrogels in Tissue Engineering and Regenerative Medicine.
    Mantha S; Pillai S; Khayambashi P; Upadhyay A; Zhang Y; Tao O; Pham HM; Tran SD
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix Control of Periodontal Ligament Cell Activity Via Synthetic Hydrogel Scaffolds.
    Fraser D; Nguyen T; Benoit DSW
    Tissue Eng Part A; 2021 Jun; 27(11-12):733-747. PubMed ID: 33107404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.