BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 24455476)

  • 1. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.
    Mailloux RJ; Jin X; Willmore WG
    Redox Biol; 2014; 2():123-39. PubMed ID: 24455476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-glutathionylation reactions in mitochondrial function and disease.
    Mailloux RJ; Willmore WG
    Front Cell Dev Biol; 2014; 2():68. PubMed ID: 25453035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine Switches and the Regulation of Mitochondrial Bioenergetics and ROS Production.
    Mailloux RJ
    Adv Exp Med Biol; 2019; 1158():197-216. PubMed ID: 31452142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.
    Hinchy EC; Gruszczyk AV; Willows R; Navaratnam N; Hall AR; Bates G; Bright TP; Krieg T; Carling D; Murphy MP
    J Biol Chem; 2018 Nov; 293(44):17208-17217. PubMed ID: 30232152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species.
    Mailloux RJ
    Redox Biol; 2015; 4():381-98. PubMed ID: 25744690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals.
    Mailloux RJ
    Redox Biol; 2020 May; 32():101472. PubMed ID: 32171726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells.
    Armstrong JS; Whiteman M; Yang H; Jones DP; Sternberg P
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4183-9. PubMed ID: 15505073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of mitochondrial processes by protein S-nitrosylation.
    Piantadosi CA
    Biochim Biophys Acta; 2012 Jun; 1820(6):712-21. PubMed ID: 21397666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases.
    Vrettou S; Wirth B
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity.
    Che L; Yang CL; Chen Y; Wu ZL; Du ZB; Wu JS; Gan CL; Yan SP; Huang J; Guo NJ; Lin YC; Lin ZN
    Chemosphere; 2021 Jan; 262():127878. PubMed ID: 33182097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Mitochondria-Targeted Pharmaceuticals for the Treatment of Heart Disease.
    Mailloux RJ
    Curr Pharm Des; 2016; 22(31):4763-4779. PubMed ID: 27356774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.
    Mieyal JJ; Chock PB
    Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells.
    Geldon S; Fernández-Vizarra E; Tokatlidis K
    Front Cell Dev Biol; 2021; 9():720656. PubMed ID: 34557489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging mechanisms in the redox regulation of mitochondrial cytochrome c oxidase assembly and function.
    Povea-Cabello S; Brischigliaro M; Fernández-Vizarra E
    Biochem Soc Trans; 2024 Apr; 52(2):873-885. PubMed ID: 38526156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.