These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24455863)

  • 1. [Functional characteristic of the CefT transporter of the MFS family involved in the transportation of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae].
    Dumina MV; Zhgun AA; Kerpichnikov IV; Domracheva AG; Novak MI; Valiakhmetov AIa; Knorre DA; Severin FF; Él'darov MA; Bartoshevich IuÉ
    Prikl Biokhim Mikrobiol; 2013; 49(4):372-81. PubMed ID: 24455863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum.
    Nijland JG; Kovalchuk A; van den Berg MA; Bovenberg RA; Driessen AJ
    Fungal Genet Biol; 2008 Oct; 45(10):1415-21. PubMed ID: 18691664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production.
    Ullán RV; Liu G; Casqueiro J; Gutiérrez S; Bañuelos O; Martín JF
    Mol Genet Genomics; 2002 Jul; 267(5):673-83. PubMed ID: 12172807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter.
    Ullán RV; Teijeira F; Martín JF
    Curr Genet; 2008 Sep; 54(3):153-61. PubMed ID: 18668246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum.
    Li H; Hu P; Wang Y; Pan Y; Liu G
    Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum.
    Teijeira F; Ullán RV; Fernández-Aguado M; Martín JF
    Metab Eng; 2011 Sep; 13(5):532-43. PubMed ID: 21704721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum.
    Liu Y; Gong G; Xie L; Yuan N; Zhu C; Zhu B; Hu Y
    Mol Biotechnol; 2010 Feb; 44(2):101-9. PubMed ID: 19787461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production.
    Teijeira F; Ullán RV; Guerra SM; García-Estrada C; Vaca I; Martín JF
    Biochem J; 2009 Feb; 418(1):113-24. PubMed ID: 18840096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression.
    Ullán RV; Godio RP; Teijeira F; Vaca I; García-Estrada C; Feltrer R; Kosalkova K; Martín JF
    J Microbiol Methods; 2008 Oct; 75(2):209-18. PubMed ID: 18590779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum.
    Terfehr D; Kück U
    Microbiology (Reading); 2017 Jun; 163(6):817-828. PubMed ID: 28598313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism.
    Li J; Pan Y; Liu G
    Fungal Genet Biol; 2013 Dec; 61():69-79. PubMed ID: 24161729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative gene expression profiling reveals key changes in expression levels of cephalosporin C biosynthesis and transport genes between low and high-producing strains of Acremonium chrysogenum.
    Dumina MV; Zhgun AA; Novak MI; Domratcheva AG; Petukhov DV; Dzhavakhiya VV; Eldarov MA; Bartoshevitch IuE
    World J Microbiol Biotechnol; 2014 Nov; 30(11):2933-41. PubMed ID: 25164956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum.
    Zhgun A; Dumina M; Valiakhmetov A; Eldarov M
    PLoS One; 2020; 15(8):e0238452. PubMed ID: 32866191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of cephalosporin C production in Acremonium chrysogenum M35 by glycerol.
    Shin HY; Lee JY; Jung YR; Kim SW
    Bioresour Technol; 2010 Jun; 101(12):4549-53. PubMed ID: 20171092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Myb transcription factor represses conidiation and cephalosporin C production in Acremonium chrysogenum.
    Wang Y; Hu P; Li H; Wang Y; Long LK; Li K; Zhang X; Pan Y; Liu G
    Fungal Genet Biol; 2018 Sep; 118():1-9. PubMed ID: 29870835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homologous and heterologous PPN1 genes.
    Eldarov MA; Baranov MV; Dumina MV; Shgun AA; Andreeva NA; Trilisenko LV; Kulakovskaya TV; Ryasanova LP; Kulaev IS
    Biochemistry (Mosc); 2013 Aug; 78(8):946-53. PubMed ID: 24228884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first promoter for conditional gene expression in Acremonium chrysogenum: iron starvation-inducible mir1(P).
    Gsaller F; Blatzer M; Abt B; Schrettl M; Lindner H; Haas H
    J Biotechnol; 2013 Jan; 163(1):77-80. PubMed ID: 23089729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum.
    Guan F; Pan Y; Li J; Liu G
    Sci China Life Sci; 2017 Sep; 60(9):958-967. PubMed ID: 28812298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cephalosporin biosynthesis.
    Schmitt EK; Hoff B; Kück U
    Adv Biochem Eng Biotechnol; 2004; 88():1-43. PubMed ID: 15719551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi.
    Martín JF
    Fungal Biol Biotechnol; 2020; 7():6. PubMed ID: 32351700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.