BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24455868)

  • 1. [Effect of the rol genes from Agrobacterium rhizogenes on the content and structure of pectic substances and glycanase activity in Rubia cordifolia transgenic cell cultures].
    Giunter EA; Popeĭko OV; Shkryl' IuN; Veremeĭchik GN; Bulgakov VP; Ovodov IuS
    Prikl Biokhim Mikrobiol; 2013; 49(4):409-16. PubMed ID: 24455868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-wall polysaccharide composition and glycanase activity of Silene vulgaris callus transformed with rolB and rolC genes.
    Günter EA; Shkryl YN; Popeyko OV; Veremeichik GN; Bulgakov VP
    Carbohydr Polym; 2015 Mar; 118():52-9. PubMed ID: 25542107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Tchernoded GK; Mischenko NP; Fedoreyev SA; Zhuravlev YN
    Biotechnol Bioeng; 2008 May; 100(1):118-25. PubMed ID: 18023060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of seven class III peroxidases induced by overexpression of the agrobacterial rolB gene in Rubia cordifolia transgenic callus cultures.
    Veremeichik GN; Shkryl YN; Bulgakov VP; Avramenko TV; Zhuravlev YN
    Plant Cell Rep; 2012 Jun; 31(6):1009-19. PubMed ID: 22238062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia.
    Veremeichik G; Bulgakov V; Shkryl Y
    Plant Physiol Biochem; 2016 Aug; 105():282-289. PubMed ID: 27208504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN
    Biochemistry (Mosc); 2003 Jul; 68(7):795-801. PubMed ID: 12946262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN
    Planta; 2003 Jul; 217(3):349-55. PubMed ID: 14520561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene.
    Veremeichik GN; Bulgakov VP; Shkryl YN; Silantieva SA; Makhazen DS; Tchernoded GK; Mischenko NP; Fedoreyev SA; Vasileva EA
    J Biotechnol; 2019 Dec; 306():38-46. PubMed ID: 31526834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Avramenko TV; Günter EA; Ovodov YS; Muzarok TI; Zhuravlev YN
    J Biotechnol; 2013 Oct; 168(1):64-70. PubMed ID: 23965271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of far-red light exposure on photosynthesis and photoprotection in tomato plants transgenic for the Agrobacterium rhizogenes rolB gene.
    Bettini PP; Lazzara L; Massi L; Fani F; Mauro ML
    J Plant Physiol; 2020 Feb; 245():153095. PubMed ID: 31877472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of polysaccharides from callus culture of Silene vulgaris (M.) G. using carbohydrases in vitro.
    Gunter EA; Popeyko OV; Ovodov YS
    Biochemistry (Mosc); 2007 Sep; 72(9):1008-15. PubMed ID: 17922661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Khodakovskaya MV; Glazunov VP; Radchenko SV; Zvereva EV; Fedoreyev SA; Zhuravlev YN
    J Biotechnol; 2002 Aug; 97(3):213-21. PubMed ID: 12084477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells.
    Grishchenko OV; Kiselev KV; Tchernoded GK; Fedoreyev SA; Veselova MV; Bulgakov VP; Zhuravlev YN
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7479-89. PubMed ID: 27063013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis.
    Kiselev KV; Dubrovina AS; Bulgakov VP
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):647-55. PubMed ID: 19043702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense.
    Bulgakov VP; Gorpenchenko TY; Veremeichik GN; Shkryl YN; Tchernoded GK; Bulgakov DV; Aminin DL; Zhuravlev YN
    Plant Physiol; 2012 Mar; 158(3):1371-81. PubMed ID: 22271748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rolB gene activates the expression of genes encoding microRNA processing machinery.
    Bulgakov VP; Veremeichik GN; Shkryl YN
    Biotechnol Lett; 2015 Apr; 37(4):921-5. PubMed ID: 25491479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The beta-1,4-endogalactanase A gene from Aspergillus niger is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions.
    De Vries RP; Parenicová L; Hinz SW; Kester HC; Beldman G; Benen JA; Visser J
    Eur J Biochem; 2002 Oct; 269(20):4985-93. PubMed ID: 12383257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin-dependent regulation of growth via rolB-induced modulation of the ROS metabolism in the long-term cultivated pRiA4-transformed Rubiacordifolia L. calli.
    Veremeichik GN; Gorpenchenko TY; Rusapetova TV; Brodovskaya EV; Tchernoded GK; Bulgakov DV; Shkryl YN; Bulgakov VP
    Plant Physiol Biochem; 2023 Sep; 202():107932. PubMed ID: 37557016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression profiles of calcium-dependent protein kinase genes (CDPK1-14) in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia under temperature- and salt-induced stresses.
    Veremeichik GN; Shkryl YN; Pinkus SA; Bulgakov VP
    J Plant Physiol; 2014 Apr; 171(7):467-74. PubMed ID: 24655382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of chemical structure of pea pectin by using pectinolytic enzymes.
    Noguchi M; Hasegawa Y; Suzuki S; Nakazawa M; Ueda M; Sakamoto T
    Carbohydr Polym; 2020 Mar; 231():115738. PubMed ID: 31888846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.