BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24455957)

  • 1. [Chemical form changes of exogenous water solution fluoride and bioavailability in tea garden soil].
    Cai HM; Peng CY; Chen J; Hou RY; Wan XC
    Huan Jing Ke Xue; 2013 Nov; 34(11):4440-6. PubMed ID: 24455957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.).
    Yi X; Qiao S; Ma L; Wang J; Ruan J
    Environ Geochem Health; 2017 Oct; 39(5):1005-1016. PubMed ID: 27591762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants.
    Gao H; Zhang Z; Wan X
    Environ Geochem Health; 2012 Oct; 34(5):551-62. PubMed ID: 22580712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characteristics of forms of fluorine in soils and influential factors].
    Wu W; Xie Z; Xu J; Hong Z; Liu C
    Huan Jing Ke Xue; 2002 Mar; 23(2):104-8. PubMed ID: 12048804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.).
    Ruan J; Ma L; Shi Y; Han W
    Ann Bot; 2004 Jan; 93(1):97-105. PubMed ID: 14644914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: a systematic review.
    Peng CY; Xu XF; Ren YF; Niu HL; Yang YQ; Hou RY; Wan XC; Cai HM
    J Sci Food Agric; 2021 Jan; 101(2):379-387. PubMed ID: 32623727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead contamination in tea garden soils and factors affecting its bioavailability.
    Jin CW; Zheng SJ; He YF; Zhou GD; Zhou ZX
    Chemosphere; 2005 May; 59(8):1151-9. PubMed ID: 15833489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China.
    Cai H; Zhu X; Peng C; Xu W; Li D; Wang Y; Fang S; Li Y; Hu S; Wan X
    Ecotoxicol Environ Saf; 2016 Sep; 131():14-21. PubMed ID: 27162130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China.
    Wang M; Zhang L; Liu Y; Chen D; Liu L; Li C; Kang KJ; Wang L; He Z; Yang X
    Environ Sci Pollut Res Int; 2021 May; 28(20):26112-26123. PubMed ID: 33483930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tealeaves may release or absorb fluoride, depending on the fluoride content of water.
    Malde MK; Greiner-Simonsen R; Julshamn K; Bjorvatn K
    Sci Total Environ; 2006 Aug; 366(2-3):915-7. PubMed ID: 16356534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].
    Chang TJ; Cui XQ; Ruan Z; Zhao XL
    Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.
    Moghaddasi S; Fotovat A; Khoshgoftarmanesh AH; Karimzadeh F; Khazaei HR; Khorassani R
    Ecotoxicol Environ Saf; 2017 Oct; 144():543-551. PubMed ID: 28688355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze).
    Han WY; Shi YZ; Ma LF; Ruan JY; Zhao FJ
    Chemosphere; 2007 Jan; 66(1):84-90. PubMed ID: 16844190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of spinach (Spinacea oleracea) to the added fluoride in an alkaline soil.
    Jha SK; Nayak AK; Sharma YK
    Food Chem Toxicol; 2008 Sep; 46(9):2968-71. PubMed ID: 18639373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils.
    Brougham KM; Roberts SR; Davison AW; Port GR
    Environ Pollut; 2013 Jul; 178():89-96. PubMed ID: 23545342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminium dynamics from soil to tea plant (Camellia sinensis L.): is it enhanced by municipal solid waste compost application?
    Karak T; Sonar I; Paul RK; Frankowski M; Boruah RK; Dutta AK; Das DK
    Chemosphere; 2015 Jan; 119():917-926. PubMed ID: 25259883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on ecological risk assessment technology of fluoride pollution from arid oasis soil].
    Xue SY; Li P; Wang SL; Nan ZR
    Huan Jing Ke Xue; 2014 Mar; 35(3):1075-80. PubMed ID: 24881399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of an acid ammonium oxalate extraction to determine fluoride resident concentrations in soils.
    Bégin L; Fortin J
    J Environ Qual; 2003; 32(2):662-73. PubMed ID: 12708691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies.
    Iriel A; Bruneel SP; Schenone N; Cirelli AF
    Ecotoxicol Environ Saf; 2018 Mar; 149():166-172. PubMed ID: 29169093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of sulfur on the bioavailability of arsenic uptake by rice (Oryza. sativa L. ) and its speciation in soil ].
    Yang SJ; Tang BP; Wang DC; Rao W; Zhang YN; Wang D; Zhu YJ
    Huan Jing Ke Xue; 2014 Sep; 35(9):3553-63. PubMed ID: 25518679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.