These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2445608)

  • 41. Demonstration of the granular layer and the fate of the hyaline layer during the development of a sea urchin (Lytechinus variegatus).
    Cameron RA; Holland ND
    Cell Tissue Res; 1985; 239(2):455-8. PubMed ID: 3978700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exogenous hyalin and sea urchin gastrulation. Part IV: a direct adhesion assay - progress in identifying hyalin's active sites.
    Ghazarian H; Coyle-Thompson C; Dalrymple W; Hutchins-Carroll V; Metzenberg S; Razinia Z; Carroll EJ; Oppenheimer SB
    Zygote; 2010 Feb; 18(1):17-26. PubMed ID: 19500445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a major polypeptide component of the sea urchin fertilization envelope.
    Vater CA; Jackson RC
    Dev Biol; 1989 Mar; 132(1):113-29. PubMed ID: 2492960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a component of the sea urchin hyaline layer, HLC-175, which undergoes proteolytic processing during development.
    Robinson JJ
    Int J Biochem Cell Biol; 1995 Jul; 27(7):675-81. PubMed ID: 7648423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein composition of the hyaline layer of sea urchin embryos and reaggregating cells.
    McCarthy RA; Spiegel M
    Cell Differ; 1983 Oct; 13(2):93-102. PubMed ID: 6661780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.
    Hodor PG; Illies MR; Broadley S; Ettensohn CA
    Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A 9.6 S protein is the third calcium-insoluble component of the sea urchin hyaline layer.
    Justice RW; Nagel GM; Gottschling CF; Damis MF; Carroll EJ
    Arch Biochem Biophys; 1992 Apr; 294(1):297-305. PubMed ID: 1550354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo.
    Henson JH; Begg DA; Beaulieu SM; Fishkind DJ; Bonder EM; Terasaki M; Lebeche D; Kaminer B
    J Cell Biol; 1989 Jul; 109(1):149-61. PubMed ID: 2663877
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hyalin, a sea urchin extraembryonic matrix protein: relationship between calcium binding and hyalin gelation.
    Robinson JJ; Hall D; Brennan C; Kean P
    Arch Biochem Biophys; 1992 Oct; 298(1):129-34. PubMed ID: 1524421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and characterization of gelatin-cleavage activities in the apically located extracellular matrix of the sea urchin embryo.
    Flood J; Mayne J; Robinson JJ
    Biochem Cell Biol; 2000; 78(4):455-62. PubMed ID: 11012084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin.
    Leguia M; Conner S; Berg L; Wessel GM
    Mol Reprod Dev; 2006 Jul; 73(7):895-905. PubMed ID: 16572466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immunolocalization of the sea urchin sperm receptor in eggs and maturing ovaries.
    Ruiz-Bravo N; Janak DJ; Lennarz WJ
    Biol Reprod; 1989 Aug; 41(2):323-34. PubMed ID: 2478202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differentiation of a calsequestrin-containing endoplasmic reticulum during sea urchin oogenesis.
    Henson JH; Beaulieu SM; Kaminer B; Begg DA
    Dev Biol; 1990 Dec; 142(2):255-69. PubMed ID: 2257966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Members of the SNARE hypothesis are associated with cortical granule exocytosis in the sea urchin egg.
    Conner S; Leaf D; Wessel G
    Mol Reprod Dev; 1997 Sep; 48(1):106-18. PubMed ID: 9266767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of matrix metalloprotease activities induced in the sea urchin extraembryonic matrix, the hyaline layer.
    Sharpe C; Robinson JJ
    Biochem Cell Biol; 2001; 79(4):461-8. PubMed ID: 11527215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developmental regulation of lectin-binding patterns in Paracentrotus lividus gonads, gametes, and early embryos.
    Contini A; Falugi C; Fasulo S
    Acta Histochem; 1992; 92(2):179-89. PubMed ID: 1642105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus.
    Gibson AW; Burke RD
    Dev Biol; 1985 Feb; 107(2):414-9. PubMed ID: 3972163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunolocalization of hyalin in sea urchin eggs and embryos using an antihyalin-specific monoclonal antibody.
    Vater CA; Jackson RC
    Mol Reprod Dev; 1990 Mar; 25(3):215-26. PubMed ID: 1691919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fertilization increases the polyphosphoinositide content of sea urchin eggs.
    Turner PR; Sheetz MP; Jaffe LA
    Nature; 1984 Aug 2-8; 310(5976):414-5. PubMed ID: 6087155
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo.
    Katow H
    Exp Cell Res; 1995 Jun; 218(2):469-78. PubMed ID: 7796882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.