BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24456120)

  • 1. Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass.
    Boinovich LB; Domantovskiy AG; Emelyanenko AM; Pashinin AS; Ionin AA; Kudryashov SI; Saltuganov PN
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2080-5. PubMed ID: 24456120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings.
    Boinovich LB; Emelyanenko KA; Domantovsky AG; Emelyanenko AM
    Langmuir; 2018 Jun; 34(24):7059-7066. PubMed ID: 29799202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.
    Boinovich LB; Emelyanenko AM; Modestov AD; Domantovsky AG; Emelyanenko KA
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19500-8. PubMed ID: 26271017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties.
    Boinovich LB; Modin EB; Sayfutdinova AR; Emelyanenko KA; Vasiliev AL; Emelyanenko AM
    ACS Nano; 2017 Oct; 11(10):10113-10123. PubMed ID: 28873295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of design of superhydrophobic coatings by deposition from dispersions.
    Boinovich L; Emelyanenko A
    Langmuir; 2009 Mar; 25(5):2907-12. PubMed ID: 19437765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of long-term durability of superhydrophobic properties under continuous contact with water.
    Boinovich L; Emelyanenko AM; Pashinin AS
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1754-8. PubMed ID: 20476721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Apr; 396():152-9. PubMed ID: 23433522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
    Cheng M; Zhang S; Dong H; Han S; Wei H; Shi F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4275-82. PubMed ID: 25644454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.
    Wang H; Zhao J; Zhu Y; Meng Y; Zhu Y
    J Colloid Interface Sci; 2013 Jul; 402():253-8. PubMed ID: 23642807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.
    Xu L; He J
    Langmuir; 2012 May; 28(19):7512-8. PubMed ID: 22533369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO₂ nanoparticles.
    Schaeffer DA; Polizos G; Smith DB; Lee DF; Hunter SR; Datskos PG
    Nanotechnology; 2015 Feb; 26(5):055602. PubMed ID: 25573924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles.
    Ebert D; Bhushan B
    Langmuir; 2012 Aug; 28(31):11391-9. PubMed ID: 22765167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal treatment of nanoparticle thin films for enhanced mechanical durability.
    Gemici Z; Shimomura H; Cohen RE; Rubner MF
    Langmuir; 2008 Mar; 24(5):2168-77. PubMed ID: 18232719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm).
    Karunakaran RG; Lu CH; Zhang Z; Yang S
    Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond Laser Fabricated Elastomeric Superhydrophobic Surface with Stretching-Enhanced Water Repellency.
    Yang H; Xu K; Xu C; Fan D; Cao Y; Xue W; Pang J
    Nanoscale Res Lett; 2019 Oct; 14(1):333. PubMed ID: 31650340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.
    Fang J; Wang H; Xue Y; Wang X; Lin T
    ACS Appl Mater Interfaces; 2010 May; 2(5):1449-55. PubMed ID: 20397642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable Superhydrophobic Coatings on Tungsten Surface by Nanosecond Laser Ablation and Fluorooxysilane Modification.
    Kuzina EA; Emelyanenko KA; Teplonogova MA; Emelyanenko AM; Boinovich LB
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.