These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 24456276)
41. Full-length 16S rRNA gene sequencing and machine learning reveal the bacterial composition of inhalable particles from two different breeding stages in a piggery. Peng S; Luo M; Long D; Liu Z; Tan Q; Huang P; Shen J; Pu S Ecotoxicol Environ Saf; 2023 Mar; 253():114712. PubMed ID: 36863163 [TBL] [Abstract][Full Text] [Related]
42. Exposure to airborne microorganisms and endotoxin in herb processing plants. Dutkiewicz J; Krysińska-Traczyk E; Skórska C; Sitkowska J; Prazmo Z; Golec M Ann Agric Environ Med; 2001; 8(2):201-11. PubMed ID: 11748878 [TBL] [Abstract][Full Text] [Related]
43. [Concentration and size distribution of bioaerosols at non-haze and haze days in Beijing]. Gao M; Qiu TL; Jia RZ; Han ML; Song Y; Wang XM Huan Jing Ke Xue; 2014 Dec; 35(12):4415-21. PubMed ID: 25826908 [TBL] [Abstract][Full Text] [Related]
44. Assessment of the health impacts of particulate matter characteristics. Bell ML; Res Rep Health Eff Inst; 2012 Jan; (161):5-38. PubMed ID: 22393584 [TBL] [Abstract][Full Text] [Related]
45. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. Yuan H; Zhang D; Shi Y; Li B; Yang J; Yu X; Chen N; Kakikawa M J Environ Sci (China); 2017 May; 55():33-40. PubMed ID: 28477828 [TBL] [Abstract][Full Text] [Related]
46. Comparison of chemical composition and airborne bacterial community structure in PM Zhong S; Zhang L; Jiang X; Gao P Sci Total Environ; 2019 Mar; 655():202-210. PubMed ID: 30471588 [TBL] [Abstract][Full Text] [Related]
47. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China. Lu R; Li Y; Li W; Xie Z; Fan C; Liu P; Deng S Sci Total Environ; 2018 Oct; 637-638():244-252. PubMed ID: 29753222 [TBL] [Abstract][Full Text] [Related]
48. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. Su K; Liang Z; Zhang S; Liao W; Gu J; Guo Y; Li G; An T J Hazard Mater; 2024 Jul; 472():134459. PubMed ID: 38691999 [TBL] [Abstract][Full Text] [Related]
49. An evaluation of resident exposure to respirable particulate matter and health economic loss in Beijing during Beijing 2008 Olympic Games. Hou Q; An XQ; Wang Y; Guo JP Sci Total Environ; 2010 Sep; 408(19):4026-32. PubMed ID: 20542537 [TBL] [Abstract][Full Text] [Related]
50. Human Inhalation Exposure to Aerosol and Health Effect: Aerosol Monitoring and Modelling Regional Deposited Doses. Oh HJ; Ma Y; Kim J Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32187987 [TBL] [Abstract][Full Text] [Related]
51. Pathogenic bacteria and fungi in bioaerosols from specialized hospitals in Shandong province, East China. Chen L; Song Z; Zhou X; Yang G; Yu G Environ Pollut; 2024 Jan; 341():122922. PubMed ID: 37984476 [TBL] [Abstract][Full Text] [Related]
52. How Did Distribution Patterns of Particulate Matter Air Pollution (PM Fan Z; Zhan Q; Yang C; Liu H; Zhan M Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32872261 [TBL] [Abstract][Full Text] [Related]
53. Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP. Liu Y; Chen R; Shen X; Mao X Environ Int; 2004 Apr; 30(2):189-97. PubMed ID: 14749108 [TBL] [Abstract][Full Text] [Related]
54. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Pastuszka JS; Rogula-Kozłowska W; Zajusz-Zubek E Environ Monit Assess; 2010 Sep; 168(1-4):613-27. PubMed ID: 19757124 [TBL] [Abstract][Full Text] [Related]
55. Free tropospheric transport of microorganisms from Asia to North America. Smith DJ; Jaffe DA; Birmele MN; Griffin DW; Schuerger AC; Hee J; Roberts MS Microb Ecol; 2012 Nov; 64(4):973-85. PubMed ID: 22760734 [TBL] [Abstract][Full Text] [Related]
56. Applicability of a modified MCE filter method with Button Inhalable Sampler for monitoring personal bioaerosol inhalation exposure. Xu Z; Xu H; Yao M Environ Sci Pollut Res Int; 2013 May; 20(5):2963-72. PubMed ID: 23054771 [TBL] [Abstract][Full Text] [Related]
57. [Inhalable particulate matter and fine particulate matter: their basic characteristics, monitoring methods, and forest regulation functions]. Wang H; Lu SW; Li SN; Pan QH; Zhang YP Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):869-77. PubMed ID: 23755507 [TBL] [Abstract][Full Text] [Related]
58. Air pollution in China: Status and spatiotemporal variations. Song C; Wu L; Xie Y; He J; Chen X; Wang T; Lin Y; Jin T; Wang A; Liu Y; Dai Q; Liu B; Wang YN; Mao H Environ Pollut; 2017 Aug; 227():334-347. PubMed ID: 28482313 [TBL] [Abstract][Full Text] [Related]
59. [Comparison of atmospheric particulate matter and aerosol optical depth in Beijing City]. Lin HF; Xin JY; Zhang WY; Wang YS; Liu ZR; Chen CL Huan Jing Ke Xue; 2013 Mar; 34(3):826-34. PubMed ID: 23745383 [TBL] [Abstract][Full Text] [Related]
60. Relationships of relative humidity with PM Lou C; Liu H; Li Y; Peng Y; Wang J; Dai L Environ Monit Assess; 2017 Oct; 189(11):582. PubMed ID: 29063278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]