These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 24456306)
21. Study of the affinity between the protein kinase PKA and homoarginine-containing peptides derived from kemptide: Free energy perturbation (FEP) calculations. Mena-Ulecia K; Gonzalez-Norambuena F; Vergara-Jaque A; Poblete H; Tiznado W; Caballero J J Comput Chem; 2018 Jun; 39(16):986-992. PubMed ID: 29399821 [TBL] [Abstract][Full Text] [Related]
22. Is Disrupted Nucleotide-Substrate Cooperativity a Common Trait for Cushing's Syndrome Driving Mutations of Protein Kinase A? Walker C; Wang Y; Olivieri C; V S M; Gao J; Bernlohr DA; Calebiro D; Taylor SS; Veglia G J Mol Biol; 2021 Sep; 433(18):167123. PubMed ID: 34224748 [TBL] [Abstract][Full Text] [Related]
23. Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit. Izvolski A; Järv J; Kuznetsov A Comput Biol Chem; 2013 Dec; 47():66-70. PubMed ID: 23938955 [TBL] [Abstract][Full Text] [Related]
24. Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A. Olivieri C; Walker C; Karamafrooz A; Wang Y; Manu VS; Porcelli F; Blumenthal DK; Thomas DD; Bernlohr DA; Simon SM; Taylor SS; Veglia G Commun Biol; 2021 Mar; 4(1):321. PubMed ID: 33692454 [TBL] [Abstract][Full Text] [Related]
25. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor. Ung MU; Lu B; McCammon JA Biopolymers; 2006 Apr; 81(6):428-39. PubMed ID: 16365849 [TBL] [Abstract][Full Text] [Related]
26. Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting. Cheng X; Shaltiel S; Taylor SS Biochemistry; 1998 Oct; 37(40):14005-13. PubMed ID: 9760235 [TBL] [Abstract][Full Text] [Related]
27. Predicting the open conformations of protein kinases using molecular dynamics simulations. Bjarnadottir U; Nielsen JE Biopolymers; 2012 Jan; 97(1):65-72. PubMed ID: 21858778 [TBL] [Abstract][Full Text] [Related]
28. Dynamic allostery-based molecular workings of kinase:peptide complexes. Ahuja LG; Aoto PC; Kornev AP; Veglia G; Taylor SS Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15052-15061. PubMed ID: 31285328 [TBL] [Abstract][Full Text] [Related]
29. Determinants of ligand binding to cAMP-dependent protein kinase. Hünenberger PH; Helms V; Narayana N; Taylor SS; McCammon JA Biochemistry; 1999 Feb; 38(8):2358-66. PubMed ID: 10029529 [TBL] [Abstract][Full Text] [Related]
30. Water-mediated conformational preselection mechanism in substrate binding cooperativity to protein kinase A. Setny P; Wiśniewska MD Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3852-3857. PubMed ID: 29581285 [TBL] [Abstract][Full Text] [Related]
31. Allosteric cooperativity in protein kinase A. Masterson LR; Mascioni A; Traaseth NJ; Taylor SS; Veglia G Proc Natl Acad Sci U S A; 2008 Jan; 105(2):506-11. PubMed ID: 18178622 [TBL] [Abstract][Full Text] [Related]
32. Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: new insights into the catalytic mechanism. Yang J; Ten Eyck LF; Xuong NH; Taylor SS J Mol Biol; 2004 Feb; 336(2):473-87. PubMed ID: 14757059 [TBL] [Abstract][Full Text] [Related]
33. Global consequences of activation loop phosphorylation on protein kinase A. Steichen JM; Iyer GH; Li S; Saldanha SA; Deal MS; Woods VL; Taylor SS J Biol Chem; 2010 Feb; 285(6):3825-3832. PubMed ID: 19965870 [TBL] [Abstract][Full Text] [Related]
34. Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways. Chu WT; Chu X; Wang J Proc Natl Acad Sci U S A; 2017 Sep; 114(38):E7959-E7968. PubMed ID: 28855336 [TBL] [Abstract][Full Text] [Related]
35. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Kim C; Cheng CY; Saldanha SA; Taylor SS Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648 [TBL] [Abstract][Full Text] [Related]
36. Mechanism of activation of cAMP-dependent protein kinase: in Mucor rouxii the apparent specific activity of the cAMP-activated holoenzyme is different than that of its free catalytic subunit. Zaremberg V; Donella-Deana A; Moreno S Arch Biochem Biophys; 2000 Sep; 381(1):74-82. PubMed ID: 11019822 [TBL] [Abstract][Full Text] [Related]
37. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Grant BD; Hemmer W; Tsigelny I; Adams JA; Taylor SS Biochemistry; 1998 May; 37(21):7708-15. PubMed ID: 9601030 [TBL] [Abstract][Full Text] [Related]
38. Understanding how cAMP-dependent protein kinase can catalyze phosphoryl transfer in the presence of Ca Pérez-Gallegos A; Garcia-Viloca M; González-Lafont À; Lluch JM Phys Chem Chem Phys; 2017 Apr; 19(16):10377-10394. PubMed ID: 28379230 [TBL] [Abstract][Full Text] [Related]
39. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Yu S; Mei FC; Lee JC; Cheng X Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031 [TBL] [Abstract][Full Text] [Related]
40. Refinement of X-ray data on dual cosubstrate specificity of CK2 kinase by free energy calculations based on molecular dynamics simulation. Setny P; Geller M Proteins; 2005 Feb; 58(3):511-7. PubMed ID: 15624214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]