These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 24456341)
41. Molecular and Kinetic Models for Pore Formation of Endo H Toxins (Basel); 2022 Jun; 14(7):. PubMed ID: 35878171 [TBL] [Abstract][Full Text] [Related]
42. Multiple receptors as targets of Cry toxins in mosquitoes. Likitvivatanavong S; Chen J; Evans AM; Bravo A; Soberon M; Gill SS J Agric Food Chem; 2011 Apr; 59(7):2829-38. PubMed ID: 21210704 [TBL] [Abstract][Full Text] [Related]
43. Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region. García-Gómez BI; Sánchez J; Martínez de Castro DL; Ibarra JE; Bravo A; Soberón M Appl Environ Microbiol; 2013 Nov; 79(22):6969-73. PubMed ID: 24014526 [TBL] [Abstract][Full Text] [Related]
44. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Peng D; Xu X; Ye W; Yu Z; Sun M Appl Microbiol Biotechnol; 2010 Jan; 85(4):1033-40. PubMed ID: 19652967 [TBL] [Abstract][Full Text] [Related]
45. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Ocelotl J; Sánchez J; Gómez I; Tabashnik BE; Bravo A; Soberón M Sci Rep; 2017 May; 7(1):2386. PubMed ID: 28539590 [TBL] [Abstract][Full Text] [Related]
46. Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae. Rodríguez-Almazán C; Reyes EZ; Zúñiga-Navarrete F; Muñoz-Garay C; Gómez I; Evans AM; Likitvivatanavong S; Bravo A; Gill SS; Soberón M Biochem J; 2012 May; 443(3):711-7. PubMed ID: 22329749 [TBL] [Abstract][Full Text] [Related]
47. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Portugal L; Muñóz-Garay C; Martínez de Castro DL; Soberón M; Bravo A Insect Biochem Mol Biol; 2017 Jan; 80():21-31. PubMed ID: 27867074 [TBL] [Abstract][Full Text] [Related]
48. Proteolytic processing of Bacillus thuringiensis toxin Cry1Ab in rice brown planthopper, Nilaparvata lugens (Stål). Shao E; Liu S; Lin L; Guan X J Invertebr Pathol; 2013 Nov; 114(3):255-7. PubMed ID: 24021715 [TBL] [Abstract][Full Text] [Related]
49. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Gómez I; Ocelotl J; Sánchez J; Aguilar-Medel S; Peña-Chora G; Lina-Garcia L; Bravo A; Soberón M Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887720 [TBL] [Abstract][Full Text] [Related]
50. Sodium solute symporter and cadherin proteins act as Bacillus thuringiensis Cry3Ba toxin functional receptors in Tribolium castaneum. Contreras E; Schoppmeier M; Real MD; Rausell C J Biol Chem; 2013 Jun; 288(25):18013-21. PubMed ID: 23645668 [TBL] [Abstract][Full Text] [Related]
51. Study of the Khorramnejad A; Domínguez-Arrizabalaga M; Caballero P; Escriche B; Bel Y Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32098045 [No Abstract] [Full Text] [Related]
52. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
53. Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin. Gómez I; Dean DH; Bravo A; Soberón M Biochemistry; 2003 Sep; 42(35):10482-9. PubMed ID: 12950175 [TBL] [Abstract][Full Text] [Related]
55. Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Girard F; Vachon V; Préfontaine G; Marceau L; Su Y; Larouche G; Vincent C; Schwartz JL; Masson L; Laprade R Appl Environ Microbiol; 2008 May; 74(9):2565-72. PubMed ID: 18326669 [TBL] [Abstract][Full Text] [Related]
56. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria. Ibrahim MA; Griko NB; Bulla LA Exp Biol Med (Maywood); 2013 Apr; 238(4):350-9. PubMed ID: 23760000 [TBL] [Abstract][Full Text] [Related]
57. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Lee MK; Walters FS; Hart H; Palekar N; Chen JS Appl Environ Microbiol; 2003 Aug; 69(8):4648-57. PubMed ID: 12902253 [TBL] [Abstract][Full Text] [Related]
58. Evidence for intermolecular interaction as a necessary step for pore-formation activity and toxicity of Bacillus thuringiensis Cry1Ab toxin. Soberón M; Pérez RV; Nuñez-Valdéz ME; Lorence A; Gómez I; Sánchez J; Bravo A FEMS Microbiol Lett; 2000 Oct; 191(2):221-5. PubMed ID: 11024267 [TBL] [Abstract][Full Text] [Related]
59. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. Liu S; Wang S; Wu S; Wu Y; Yang Y PLoS One; 2020; 15(1):e0228159. PubMed ID: 32004347 [TBL] [Abstract][Full Text] [Related]
60. Comparison of the localization of Bacillus thuringiensis Cry1A delta-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta. Chen J; Brown MR; Hua G; Adang MJ Cell Tissue Res; 2005 Jul; 321(1):123-9. PubMed ID: 15902495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]