These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

675 related articles for article (PubMed ID: 24456591)

  • 1. Rapid and sensitive methodology for determination of ethyl carbamate in fortified wines using microextraction by packed sorbent and gas chromatography with mass spectrometric detection.
    Leça JM; Pereira V; Pereira AC; Marques JC
    Anal Chim Acta; 2014 Feb; 811():29-35. PubMed ID: 24456591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.
    Perestrelo R; Silva CL; Câmara JS
    J Chromatogr A; 2015 Feb; 1381():54-63. PubMed ID: 25618358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction as a powerful tool for quantification of ethyl carbamate in fortified wines. The case study of Madeira wine.
    Perestrelo R; Petronilho S; Câmara JS; Rocha SM
    J Chromatogr A; 2010 May; 1217(20):3441-5. PubMed ID: 20388567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New method for determination of (E)-resveratrol in wine based on microextraction using packed sorbent and ultra-performance liquid chromatography.
    Gonçalves J; Câmara JS
    J Sep Sci; 2011 Sep; 34(18):2376-84. PubMed ID: 21805631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines.
    Gonçalves J; Mendes B; Silva CL; Câmara JS
    J Chromatogr A; 2012 Mar; 1229():13-23. PubMed ID: 22305355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive microextraction by packed sorbent-based methodology combined with ultra-high pressure liquid chromatography as a powerful technique for analysis of biologically active flavonols in wines.
    Silva CL; Gonçalves JL; Câmara JS
    Anal Chim Acta; 2012 Aug; 739():89-98. PubMed ID: 22819054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel solid-phase extraction, LC-MS/MS method for the analysis of ethyl carbamate in alcoholic beverages: application to South African wine and spirits.
    Alberts P; Stander MA; De Villiers A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011; 28(7):826-39. PubMed ID: 21574082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-automatic microextraction in packed sorbent, using a digitally controlled syringe, combined with ultra-high pressure liquid chromatography as a new and ultra-fast approach for the determination of prenylflavonoids in beers.
    Gonçalves JL; Alves VL; Rodrigues FP; Figueira JA; Câmara JS
    J Chromatogr A; 2013 Aug; 1304():42-51. PubMed ID: 23871283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study.
    Mendes B; Gonçalves J; Câmara JS
    Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification ethyl carbamate in wines using reaction-assisted-extraction with 9-xanthydrol and detection by heart-cutting multidimensional gas chromatography-mass spectrometry.
    Tu Q; Qi W; Zhao J; Zhang L; Guo Y
    Anal Chim Acta; 2018 Feb; 1001():86-92. PubMed ID: 29291810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of microextraction by packed sorbents with gas chromatography with ionic liquid stationary phases for the determination of haloanisoles in wines.
    García Pinto C; Pérez Antón A; Pérez Pavón JL; Moreno Cordero B
    J Chromatogr A; 2012 Oct; 1260():200-5. PubMed ID: 22981462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of 24 pesticide residues in fortified wines by solid-phase microextraction and gas chromatography-tandem mass spectrometry.
    Martins J; Esteves C; Simoes T; Correia M; Delerue-Matos C
    J Agric Food Chem; 2011 Jul; 59(13):6847-55. PubMed ID: 21553896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. At-line microextraction by packed sorbent-gas chromatography-mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples.
    Moeder M; Schrader S; Winkler U; Rodil R
    J Chromatogr A; 2010 Apr; 1217(17):2925-32. PubMed ID: 20334867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and environment-friendly MEPSPEP/UHPLC-PDA methodology to assess 3-hydroxy-4,5-dimethyl-2(5H)-furanone in fortified wines.
    Freitas J; Perestrelo R; Cassaca R; Castillo M; Santos M; Pereira J; Câmara JS
    Food Chem; 2017 Jan; 214():686-693. PubMed ID: 27507526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different headspace solid phase microextraction--gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine.
    Jeleń HH; Dziadas M; Majcher M
    J Chromatogr A; 2013 Oct; 1313():185-93. PubMed ID: 23932370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivatization followed by gas chromatography-mass spectrometry for quantification of ethyl carbamate in alcoholic beverages.
    Xu X; Gao Y; Cao X; Wang X; Song G; Zhao J; Hu Y
    J Sep Sci; 2012 Apr; 35(7):804-10. PubMed ID: 22383421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole in wine using microextraction in packed syringe and gas chromatography-mass spectrometry.
    Jönsson S; Hagberg J; van Bavel B
    J Agric Food Chem; 2008 Jul; 56(13):4962-7. PubMed ID: 18529064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Ethyl Carbamate in Chinese Yellow Rice Wine by Diatomaceous Earth Extraction and GC/MS Method.
    Wu P; Zhang L; Shen X; Wang L; Zou Y; Zhang J; Tan Y; Tang J; Ma B; Pan X; Jiang W
    J AOAC Int; 2015; 98(3):834-838. PubMed ID: 26086264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progress of microextraction by packed sorbent and its application in microvolume sample extraction].
    Wei J; Qin M; Yang J; Yang L
    Se Pu; 2021 Mar; 39(3):219-228. PubMed ID: 34227304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous determination of ethyl carbamate and 4-(5-)methylimidazole in yellow rice wine and soy sauce by gas chromatography with mass spectrometry.
    Wu P; Zhang L; Wang L; Zhang J; Tan Y; Tang J; Ma B; Pan X; Jiang W
    J Sep Sci; 2014 Aug; 37(16):2172-6. PubMed ID: 24865453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.