BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2445677)

  • 41. Erythrocyte membrane sodium transport in patients with treated and untreated essential hypertension.
    Cole CH
    Circulation; 1983 Jul; 68(1):17-22. PubMed ID: 6303625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Na+-Li+ countertransport in essential hypertension.
    De la Sierra A; Coca A; Aguilera MT; Urbano-Marquez A
    J Hypertens; 1988 Nov; 6(11):931-7. PubMed ID: 3235839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Erythrocyte cation cotransport and countertransport in essential hypertension.
    Wiley JS; Clarke DA; Bonacquisto LA; Scarlett JD; Harrap SB; Doyle AE
    Hypertension; 1984; 6(3):360-8. PubMed ID: 6735458
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Erythrocyte Na+/Li+ countertransport and Na+/K+ -2Cl- co-transport in essential hypertension.
    Hardman T; Clifford RH; Wierzbicki AS
    Clin Sci (Lond); 1999 Sep; 97(3):339-41. PubMed ID: 10576963
    [No Abstract]   [Full Text] [Related]  

  • 45. [The Na+/K+ cotransporter of the erythrocyte membrane in pregnancy-induced hypertension].
    Ulrich S; von Tempelhoff GF; Heilmann L
    Zentralbl Gynakol; 1994; 116(3):164-8. PubMed ID: 8178597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of ouabain-insensitive red blood cell cation transport in uremic patients.
    Boero R; Quarello F; Guarena C; Piccoli G
    Boll Soc Ital Biol Sper; 1985 Feb; 61(2):243-8. PubMed ID: 3994843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acute effects of angiotensin-converting enzyme inhibitor on erythrocyte sodium ion transport in essential hypertension.
    Fujito K; Yokomatsu M; Numahata H; Ishiguro N; Koide H
    Life Sci; 1992; 51(26):2079-87. PubMed ID: 1335539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Irreversible changes in rat erythrocyte Na+ transport systems with progesterone and estradiol administration.
    Grichois ML; Franck D; Brossard M; De Mendonca M
    Clin Exp Hypertens A; 1986; 8(8):1295-311. PubMed ID: 2434270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clinical profiles and erythrocyte Na+ transport abnormalities of four major types of primary hypertension in Spain.
    De la Sierra A; Coca A; Aguilera MT; Ingelmo M; Urbano-Márquez A
    Kidney Int; 1989 Jul; 36(1):114-9. PubMed ID: 2811053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Outward Na+-K+-Cl- cotransport function in erythrocytes from essential hypertensives.
    de la Sierra A; Coca A; Aguilera MT; Urbano-Márquez A
    J Hum Hypertens; 1989 Feb; 3(1):1-8. PubMed ID: 2724269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic analysis of erythrocyte Na+-K+ pump and cotransport in essential hypertension.
    Tuck ML; Corry DB; Maxwell M; Stern N
    Hypertension; 1987 Aug; 10(2):204-11. PubMed ID: 2440805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationships between membrane lipids and ion transport in red blood cells of Dahl rats.
    Vokurková M; Nováková O; Dobesová Z; Kunes J; Zicha J
    Life Sci; 2005 Aug; 77(13):1452-64. PubMed ID: 15936778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of tert-butyl hydroperoxide on human erythrocyte membrane ion transport and the protective actions of antioxidants.
    Dwight JF; Hendry BM
    Clin Chim Acta; 1996 May; 249(1-2):167-81. PubMed ID: 8737600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abnormal Na+-K+ ATPase kinetics in a subset of essential hypertensive patients.
    de la Sierra A; Coca A; Aguilera MT; Urbano A
    Eur J Clin Invest; 1988 Aug; 18(4):337-42. PubMed ID: 2844545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of erythrocyte Na transport pathway(s) by excess Na intake.
    Dagher G; Brossard M; Feray JC; Garay RP
    Life Sci; 1985 Jul; 37(3):243-53. PubMed ID: 2989644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Erythrocyte membrane thiol proteins associated with changes in the kinetics of Na/Li countertransport: a possible molecular explanation of changes in disease.
    Thomas TH; Rutherford PA; Vareesangthip K; Wilkinson R; West IC
    Eur J Clin Invest; 1998 Apr; 28(4):259-65. PubMed ID: 9615900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Na countertransport and cotransport in human red cells: function, dysfunction, and genes in essential hypertension.
    Canessa M; Bize I; Solomon H; Adragna N; Tosteson DC; Dagher G; Garay R; Meyer P
    Clin Exp Hypertens (1978); 1981; 3(4):783-95. PubMed ID: 6271509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Erythrocyte cation transport systems in insulin-dependent diabetics: correlation with prorenin and albuminuria.
    Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A
    J Hum Hypertens; 1994 Apr; 8(4):251-6. PubMed ID: 8021905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Depressed cheek cell sodium transport in human hypertension.
    McMurchie EJ; Burnard SL; Patten GS; King RA; Howe PR; Head RJ
    Blood Press; 1994 Sep; 3(5):328-35. PubMed ID: 7866598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peripheral effects of thyroid hormones: alteration of intracellular Na-concentration, ouabain-sensitive Na-transport, and Na-Li countertransport in human red blood cells.
    Sütterlin U; Gless KH; Schaz K; Hüfner M; Schütz V; Hunstein W
    Klin Wochenschr; 1984 Jun; 62(12):598-601. PubMed ID: 6090760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.