BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24457053)

  • 1. Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments?
    Schaller J
    Chemosphere; 2014 Jul; 107():336-343. PubMed ID: 24457053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of heavy metals release from sediment with bioturbation/bioirrigation.
    He Y; Men B; Yang X; Li Y; Xu H; Wang D
    Chemosphere; 2017 Oct; 184():235-243. PubMed ID: 28599152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae).
    Lagauzère S; Boyer P; Stora G; Bonzom JM
    Chemosphere; 2009 Jul; 76(3):324-34. PubMed ID: 19403158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation.
    He Y; Men B; Yang X; Li Y; Xu H; Wang D
    J Environ Sci (China); 2019 Jan; 75():216-223. PubMed ID: 30473287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mode of bioturbation triggers pesticide remobilization from aquatic sediments.
    Bundschuh M; Schletz M; Goedkoop W
    Ecotoxicol Environ Saf; 2016 Aug; 130():171-6. PubMed ID: 27107774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae).
    Colombo V; Pettigrove VJ; Hoffmann AA; Golding LA
    Environ Pollut; 2016 Sep; 216():198-207. PubMed ID: 27262133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review.
    Schaller J; Brackhage C; Mkandawire M; Dudel EG
    Sci Total Environ; 2011 Nov; 409(23):4891-8. PubMed ID: 21907393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioturbation/bioirrigation effect on thallium released from reservoir sediment by different organism types.
    He Y; Men B; Yang X; Wang D
    Sci Total Environ; 2015 Nov; 532():617-24. PubMed ID: 26119376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chironomid larvae and Limnodrilus hoffmeisteri bioturbation on the distribution and flux of chromium at the sediment-water interface.
    Cheng D; Song J; Zhao X; Wang S; Lin Q; Peng J; Su P; Deng W
    J Environ Manage; 2019 Sep; 245():151-159. PubMed ID: 31150906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encaged Chironomus riparius larvae in assessment of trace metal bioavailability and transfer in a landfill leachate collection pond.
    Gimbert F; Petitjean Q; Al-Ashoor A; Cretenet C; Aleya L
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11303-11312. PubMed ID: 28070811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chironomid larvae enhance phosphorus burial in lake sediments: Insights from long-term and short-term experiments.
    Hupfer M; Jordan S; Herzog C; Ebeling C; Ladwig R; Rothe M; Lewandowski J
    Sci Total Environ; 2019 May; 663():254-264. PubMed ID: 30711592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment.
    Xia X; Chen X; Zhao X; Chen H; Shen M
    Environ Sci Technol; 2012 Nov; 46(22):12467-75. PubMed ID: 23121516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting effects of black carbon amendments on PAH bioaccumulation by Chironomus plumosus larvae in two distinct sediments: role of water absorption and particle ingestion.
    Wang F; Bu Q; Xia X; Shen M
    Environ Pollut; 2011 Jul; 159(7):1905-13. PubMed ID: 21531490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ assessment of selenium bioaccumulation from water-, sediment-, and dietary-exposure pathways using caged Chironomus dilutus larvae.
    Franz ED; Wiramanaden CI; Gallego-Gallegos M; Tse JJ; Phibbs J; Janz DM; Pickering IJ; Liber K
    Environ Toxicol Chem; 2013 Dec; 32(12):2836-48. PubMed ID: 23996699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.
    Schaller J; Brackhage C
    Chemosphere; 2015 Jan; 119():394-399. PubMed ID: 25063962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced metal and metalloid concentrations in the gut system comparing to remaining tissues of Gammarus pulex L.
    Schaller J; Dharamshi J; Dudel EG
    Chemosphere; 2011 Apr; 83(4):627-31. PubMed ID: 21146851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioturbation may not always enhance the metabolic capacity of organic polluted sediments.
    Casado-Coy N; Sánchez-Jerez P; Holmer M; Sanz-Lazaro C
    Mar Environ Res; 2020 Mar; 155():104882. PubMed ID: 32072982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Synergistic effect of physical and Chironomus plumosus combined disturbance on regeneration and transformation of internal phosphorus].
    Shi XD; Li DP; Wang R; Huang Y
    Huan Jing Ke Xue; 2015 Mar; 36(3):955-62. PubMed ID: 25929063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments: a mesocosms laboratory experiment.
    Cardoso PG; Lillebø AI; Lopes CB; Pereira E; Duarte AC; Pardal MA
    Mar Pollut Bull; 2008 Feb; 56(2):325-34. PubMed ID: 18054965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.