BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24457112)

  • 1. Mechanical response of brain tissue under blast loading.
    Laksari K; Sadeghipour K; Darvish K
    J Mech Behav Biomed Mater; 2014 Apr; 32():132-144. PubMed ID: 24457112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal nonlinear wave propagation through soft tissue.
    Valdez M; Balachandran B
    J Mech Behav Biomed Mater; 2013 Apr; 20():192-208. PubMed ID: 23510921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress.
    Li G; Zhang J; Wang K; Wang M; Gao C; Ma C
    J Mech Behav Biomed Mater; 2016 Apr; 57():224-34. PubMed ID: 26735181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulation of the mechanical response of brain tissue under blast loading.
    Laksari K; Assari S; Seibold B; Sadeghipour K; Darvish K
    Biomech Model Mechanobiol; 2015 Jun; 14(3):459-72. PubMed ID: 25205088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries.
    Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.
    Bentil SA; Dupaix RB
    J Mech Behav Biomed Mater; 2014 Feb; 30():83-90. PubMed ID: 24269943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study on brain tissue under blast: primary and tertiary blast injuries.
    Rezaei A; Salimi Jazi M; Karami G; Ziejewski M
    Int J Numer Method Biomed Eng; 2014 Aug; 30(8):781-95. PubMed ID: 24515869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully nonlinear viscohyperelastic model for the brain tissue applicable to dynamic rates.
    Samadi-Dooki A; Voyiadjis GZ
    J Biomech; 2019 Feb; 84():211-217. PubMed ID: 30678890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate-dependent constitutive modeling of brain tissue.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    Biomech Model Mechanobiol; 2020 Apr; 19(2):621-632. PubMed ID: 31612343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
    Ganpule S; Alai A; Plougonven E; Chandra N
    Biomech Model Mechanobiol; 2013 Jun; 12(3):511-31. PubMed ID: 22832705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational biomechanics of human brain with and without the inclusion of the body under different blast orientation.
    Salimi Jazi M; Rezaei A; Azarmi F; Ziejewski M; Karami G
    Comput Methods Biomech Biomed Engin; 2016; 19(9):1019-31. PubMed ID: 26442577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation.
    Haldar K; Pal C
    J Mech Behav Biomed Mater; 2018 May; 81():178-194. PubMed ID: 29529589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical assessment of brain dynamic responses due to blast pressure waves.
    Chafi MS; Karami G; Ziejewski M
    Ann Biomed Eng; 2010 Feb; 38(2):490-504. PubMed ID: 19806456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact.
    Brands DW; Peters GW; Bovendeerd PH
    J Biomech; 2004 Jan; 37(1):127-34. PubMed ID: 14672576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidirectional mechanical properties and constitutive modeling of human adipose tissue under dynamic loading.
    Sun Z; Gepner BD; Lee SH; Rigby J; Cottler PS; Hallman JJ; Kerrigan JR
    Acta Biomater; 2021 Jul; 129():188-198. PubMed ID: 34048975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103380. PubMed ID: 31446342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous rate dependence of the preconditioned response of soft tissue during load controlled deformation.
    Giles JM; Black AE; Bischoff JE
    J Biomech; 2007; 40(4):777-85. PubMed ID: 16730737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain.
    Giammarinaro B; Coulouvrat F; Pinton G
    J Biomech Eng; 2016 Apr; 138(4):041003. PubMed ID: 26833489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.