These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 24457309)

  • 1. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.
    Li S; Chen X; Liu A; Wang L; Yu G
    Bioresour Technol; 2014 Mar; 155():252-7. PubMed ID: 24457309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor.
    Li S; Chen X; Wang L; Liu A; Yu G
    Bioresour Technol; 2013 Nov; 148():24-9. PubMed ID: 24041762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char.
    Yuan S; Dai ZH; Zhou ZJ; Chen XL; Yu GS; Wang FC
    Bioresour Technol; 2012 Apr; 109():188-97. PubMed ID: 22305541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor.
    Song Y; Tahmasebi A; Yu J
    Bioresour Technol; 2014 Dec; 174():204-11. PubMed ID: 25463801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.
    Yang X; Yuan C; Xu J; Zhang W
    Bioresour Technol; 2014 Dec; 173():1-5. PubMed ID: 25277348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tar reduction in pyrolysis vapours from biomass over a hot char bed.
    Gilbert P; Ryu C; Sharifi V; Swithenbank J
    Bioresour Technol; 2009 Dec; 100(23):6045-51. PubMed ID: 19604685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative investigation of rice husk, thermoplastic bituminous coal and their blends in production of value-added gaseous and liquid products during hydropyrolysis/co-hydropyrolysis.
    Zhang J; Zheng N; Wang J
    Bioresour Technol; 2018 Nov; 268():445-453. PubMed ID: 30107358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-pyrolysis characteristic of biomass and bituminous coal.
    Li S; Chen X; Liu A; Wang L; Yu G
    Bioresour Technol; 2015 Mar; 179():414-420. PubMed ID: 25553573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of coal ash on the characteristics of corn straw pyrolysis products.
    Qin Q; Zhou J; Lin B; Xie C; Zhou L
    Bioresour Technol; 2020 Dec; 318():124055. PubMed ID: 32911365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.
    Meng H; Wang S; Chen L; Wu Z; Zhao J
    Bioresour Technol; 2016 Jun; 209():273-81. PubMed ID: 26985627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach.
    Eom IY; Kim JY; Lee SM; Cho TS; Yeo H; Choi JW
    Bioresour Technol; 2013 Jan; 128():664-72. PubMed ID: 23220113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.
    Zhang H; Xiao R; Wang D; He G; Shao S; Zhang J; Zhong Z
    Bioresour Technol; 2011 Mar; 102(5):4258-64. PubMed ID: 21232946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields.
    Park J; Lee Y; Ryu C; Park YK
    Bioresour Technol; 2014 Mar; 155():63-70. PubMed ID: 24423650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-pyrolysis behavior of microalgae biomass and low-quality coal: Products distributions, char-surface morphology, and synergistic effects.
    Wu Z; Yang W; Li Y; Yang B
    Bioresour Technol; 2018 May; 255():238-245. PubMed ID: 29427875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor.
    Park DK; Kim SD; Lee SH; Lee JG
    Bioresour Technol; 2010 Aug; 101(15):6151-6. PubMed ID: 20299208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.
    Qian Y; Zhang J; Wang J
    Bioresour Technol; 2014 Dec; 174():95-102. PubMed ID: 25463787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions.
    Jeong HM; Seo MW; Jeong SM; Na BK; Yoon SJ; Lee JG; Lee WJ
    Bioresour Technol; 2014 Mar; 155():442-5. PubMed ID: 24472746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.