BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24457334)

  • 41. Parameter estimation methods for chaotic intercellular networks.
    Mariño IP; Ullner E; Zaikin A
    PLoS One; 2013; 8(11):e79892. PubMed ID: 24282513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fundamentals and Recent Developments in Approximate Bayesian Computation.
    Lintusaari J; Gutmann MU; Dutta R; Kaski S; Corander J
    Syst Biol; 2017 Jan; 66(1):e66-e82. PubMed ID: 28175922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parallelization and High-Performance Computing Enables Automated Statistical Inference of Multi-scale Models.
    Jagiella N; Rickert D; Theis FJ; Hasenauer J
    Cell Syst; 2017 Feb; 4(2):194-206.e9. PubMed ID: 28089542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ABCtoolbox: a versatile toolkit for approximate Bayesian computations.
    Wegmann D; Leuenberger C; Neuenschwander S; Excoffier L
    BMC Bioinformatics; 2010 Mar; 11():116. PubMed ID: 20202215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ABrox-A user-friendly Python module for approximate Bayesian computation with a focus on model comparison.
    Mertens UK; Voss A; Radev S
    PLoS One; 2018; 13(3):e0193981. PubMed ID: 29518130
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimation of parameters for macroparasite population evolution using approximate bayesian computation.
    Drovandi CC; Pettitt AN
    Biometrics; 2011 Mar; 67(1):225-33. PubMed ID: 20345496
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries.
    Raynal L; Chen S; Mira A; Onnela JP
    Bayesian Anal; 2022 Mar; 17(1):165-192. PubMed ID: 36213769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intellectual property rights, standards and data exchange in systems biology: Reflections from the IP Expert Meeting at the University of Luxembourg, 8-9 October 2015, ERASysAPP - ERA-Net for Systems Biology Applications.
    van Zimmeren E; Rutz B; Minssen T
    Biotechnol J; 2016 Dec; 11(12):1477-1480. PubMed ID: 27966844
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems.
    Silk D; Filippi S; Stumpf MP
    Stat Appl Genet Mol Biol; 2013 Oct; 12(5):603-18. PubMed ID: 24025688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation.
    Kypraios T; Neal P; Prangle D
    Math Biosci; 2017 May; 287():42-53. PubMed ID: 27444577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microsimulation Model Calibration with Approximate Bayesian Computation in R: A Tutorial.
    Shewmaker P; Chrysanthopoulou SA; Iskandar R; Lake D; Jutkowitz E
    Med Decis Making; 2022 Jul; 42(5):557-570. PubMed ID: 35311401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation.
    Almutiry W; Deardon R
    Int J Biostat; 2019 Dec; 16(1):. PubMed ID: 31812945
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Bayesian framework for the analysis of systems biology models of the brain.
    Russell-Buckland J; Barnes CP; Tachtsidis I
    PLoS Comput Biol; 2019 Apr; 15(4):e1006631. PubMed ID: 31026277
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automating approximate Bayesian computation by local linear regression.
    Thornton KR
    BMC Genet; 2009 Jul; 10():35. PubMed ID: 19583871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inference in high-dimensional parameter space.
    O'Hare A
    J Comput Biol; 2015 Nov; 22(11):997-1004. PubMed ID: 26176624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TopoFilter: a MATLAB package for mechanistic model identification in systems biology.
    Rybiński M; Möller S; Sunnåker M; Lormeau C; Stelling J
    BMC Bioinformatics; 2020 Jan; 21(1):34. PubMed ID: 31996136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lack of confidence in approximate Bayesian computation model choice.
    Robert CP; Cornuet JM; Marin JM; Pillai NS
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15112-7. PubMed ID: 21876135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation.
    AKesson M; Singh P; Wrede F; Hellander A
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3353-3365. PubMed ID: 34460381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FitMultiCell: simulating and parameterizing computational models of multi-scale and multi-cellular processes.
    Alamoudi E; Schälte Y; Müller R; Starruß J; Bundgaard N; Graw F; Brusch L; Hasenauer J
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37947308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.