These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
717 related articles for article (PubMed ID: 24457635)
1. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery. Liu WP; Azizian M; Sorger J; Taylor RH; Reilly BK; Cleary K; Preciado D JAMA Otolaryngol Head Neck Surg; 2014 Mar; 140(3):208-14. PubMed ID: 24457635 [TBL] [Abstract][Full Text] [Related]
2. Manual Electrode Array Insertion Through a Robot-Assisted Minimal Invasive Cochleostomy: Feasibility and Comparison of Two Different Electrode Array Subtypes. Venail F; Bell B; Akkari M; Wimmer W; Williamson T; Gerber N; Gavaghan K; Canovas F; Weber S; Caversaccio M; Uziel A Otol Neurotol; 2015 Jul; 36(6):1015-22. PubMed ID: 25853609 [TBL] [Abstract][Full Text] [Related]
4. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography. Majdani O; Bartling SH; Leinung M; Stöver T; Lenarz M; Dullin C; Lenarz T Otol Neurotol; 2008 Feb; 29(2):120-3. PubMed ID: 17971720 [TBL] [Abstract][Full Text] [Related]
5. [Image-guided minimal-invasive cochlear implantation--experiments on cadavers]. Majdani O; Bartling SH; Leinung M; Stöver T; Lenarz M; Dullin C; Lenarz T Laryngorhinootologie; 2008 Jan; 87(1):18-22. PubMed ID: 17713878 [TBL] [Abstract][Full Text] [Related]
6. Atraumatic Scala Tympani Cochleostomy; Resolution of the Dilemma. Badr A; Shabana Y; Mokbel K; Elsharabasy A; Ghonim M; Sanna M J Int Adv Otol; 2018 Aug; 14(2):190-196. PubMed ID: 30100542 [TBL] [Abstract][Full Text] [Related]
7. Cone beam CT for perioperative imaging in hearing preservation Cochlear implantation - a human cadaveric study. Nateghifard K; Low D; Awofala L; Srikanthan D; Kuthubutheen J; Daly M; Chan H; Irish J; Chen J; Lin V; Le TN J Otolaryngol Head Neck Surg; 2019 Nov; 48(1):65. PubMed ID: 31753027 [TBL] [Abstract][Full Text] [Related]
8. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Bell B; Gerber N; Williamson T; Gavaghan K; Wimmer W; Caversaccio M; Weber S Otol Neurotol; 2013 Sep; 34(7):1284-90. PubMed ID: 23921934 [TBL] [Abstract][Full Text] [Related]
9. Clinical investigation of the Nucleus Slim Modiolar Electrode. Aschendorff A; Briggs R; Brademann G; Helbig S; Hornung J; Lenarz T; Marx M; Ramos A; Stöver T; Escudé B; James CJ Audiol Neurootol; 2017; 22(3):169-179. PubMed ID: 29059669 [TBL] [Abstract][Full Text] [Related]
10. Imaging cochlear implantation with round window insertion in human temporal bones and cochlear morphological variation using high-resolution cone beam CT. Zou J; Lähelmä J; Koivisto J; Dhanasingh A; Jolly C; Aarnisalo A; Wolff J; Pyykkö I Acta Otolaryngol; 2015 May; 135(5):466-72. PubMed ID: 25675836 [TBL] [Abstract][Full Text] [Related]
11. Minimally Invasive Cochlear Implantation Assisted by Bi-planar Device: An Exploratory Feasibility Study Ke J; Zhang SX; Hu L; Li CS; Zhu YF; Sun SL; Wang LF; Ma FR Chin Med J (Engl); 2016 Oct; 129(20):2476-2483. PubMed ID: 27748341 [TBL] [Abstract][Full Text] [Related]
12. Lamb Temporal Bone as a Surgical Training Model of Round Window Cochlear Implant Electrode Insertion. Mantokoudis G; Huth ME; Weisstanner C; Friedrich HM; Nauer C; Candreia C; Caversaccio MD; Senn P Otol Neurotol; 2016 Jan; 37(1):52-6. PubMed ID: 26649606 [TBL] [Abstract][Full Text] [Related]
13. A surgical navigation system for guiding exact cochleostomy using auditory feedback: a clinical feasibility study. Cho B; Matsumoto N; Komune S; Hashizume M Biomed Res Int; 2014; 2014():769659. PubMed ID: 25093182 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Round Window vs Cochleostomy Surgical Approaches on Cochlear Implant Electrode Position: A Flat-Panel Computed Tomography Study. Jiam NT; Jiradejvong P; Pearl MS; Limb CJ JAMA Otolaryngol Head Neck Surg; 2016 Sep; 142(9):873-80. PubMed ID: 27355198 [TBL] [Abstract][Full Text] [Related]
15. Scalar localization by cone-beam computed tomography of cochlear implant carriers: a comparative study between straight and periomodiolar precurved electrode arrays. Boyer E; Karkas A; Attye A; Lefournier V; Escude B; Schmerber S Otol Neurotol; 2015 Mar; 36(3):422-9. PubMed ID: 25575374 [TBL] [Abstract][Full Text] [Related]
16. Cochlear implantation via the middle fossa approach: surgical and programming considerations. Bento RF; Bittencourt AG; Goffi-Gomez MV; Samuel P; Tsuji RK; de Brito R Otol Neurotol; 2012 Dec; 33(9):1516-24. PubMed ID: 23150094 [TBL] [Abstract][Full Text] [Related]
17. Midmodiolar reconstruction as a valuable tool to determine the exact position of the cochlear implant electrode array. Lecerf P; Bakhos D; Cottier JP; Lescanne E; Trijolet JP; Robier A Otol Neurotol; 2011 Sep; 32(7):1075-81. PubMed ID: 21817940 [TBL] [Abstract][Full Text] [Related]
18. Characterizing the size of the target region for atraumatic opening of the cochlea through the facial recess. Rau TS; Kreul D; Lexow J; Hügl S; Zuniga MG; Lenarz T; Majdani O Comput Med Imaging Graph; 2019 Oct; 77():101655. PubMed ID: 31539862 [TBL] [Abstract][Full Text] [Related]
19. A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Majdani O; Rau TS; Baron S; Eilers H; Baier C; Heimann B; Ortmaier T; Bartling S; Lenarz T; Leinung M Int J Comput Assist Radiol Surg; 2009 Sep; 4(5):475-86. PubMed ID: 20033531 [TBL] [Abstract][Full Text] [Related]
20. Surgical approach to the facial recess influences the acceptable trajectory of cochlear implantation electrodes. Copson B; Wijewickrema S; Ma X; Zhou Y; Gerard JM; O'Leary S Eur Arch Otorhinolaryngol; 2022 Jan; 279(1):137-147. PubMed ID: 33547488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]