These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24458255)

  • 1. The rapid non-polar transport of auxin in the phloem of intact Coleus plants.
    Goldsmith MH; Cataldo DA; Karn J; Brenneman T; Trip P
    Planta; 1974 Dec; 116(4):301-17. PubMed ID: 24458255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apical correlative effects in leaf epinasty of tomato.
    Kazemi S; Kefford NP
    Plant Physiol; 1974 Oct; 54(4):512-9. PubMed ID: 16658919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure of Ethylene to Change the Distribution of Indoleacetic Acid in the Petiole of Coleus blumei X frederici during Epinasty.
    Palmer JH
    Plant Physiol; 1976 Oct; 58(4):513-5. PubMed ID: 16659707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and metabolism of indole-3-acetic Acid in coleus petiole segments of increasing age.
    Veen H; Jacobs WP
    Plant Physiol; 1969 Aug; 44(8):1157-62. PubMed ID: 16657183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of auxin and gibberellin in differentiation of primary Phloem fibers.
    Aloni R
    Plant Physiol; 1979 Apr; 63(4):609-14. PubMed ID: 16660777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development.
    Golan G; Betzer R; Wolf S
    Front Plant Sci; 2013; 4():329. PubMed ID: 23986770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Low Light Stress on Distribution of Auxin (Indole-3-acetic Acid) between Shoot and Roots and Development of Lateral Roots in Barley Plants.
    Korobova A; Ivanov R; Timergalina L; Vysotskaya L; Nuzhnaya T; Akhiyarova G; Kusnetsov V; Veselov D; Kudoyarova G
    Biology (Basel); 2023 May; 12(6):. PubMed ID: 37372072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of transported auxin in etiolated maize shoots using 5-azidoindole-3-acetic Acid.
    Jones AM
    Plant Physiol; 1990 Jul; 93(3):1154-61. PubMed ID: 16667572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of 2,3,5-Triiodobenzoic Acid and 1-N-Naphthylphthalamic Acid on Indoleacetic Acid Transport in Carnation Cuttings: Relationship with Rooting.
    Guerrero JR; Garrido G; Acosta M; Sánchez-Bravo J
    J Plant Growth Regul; 1999 Dec; 18(4):183-190. PubMed ID: 10688708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radioautographic analysis of the distribution of label from h-indoleacetic Acid supplied to isolated coleus internodes.
    Sabnis DD; Hirshberg G; Jacobs WP
    Plant Physiol; 1969 Jan; 44(1):27-36. PubMed ID: 16657030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular Regeneration and Long Distance Transport of Indole-3-acetic Acid in Coleus Stems.
    Thompson NP
    Plant Physiol; 1966 Sep; 41(7):1106-12. PubMed ID: 16656371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex.
    Swarup R; Friml J; Marchant A; Ljung K; Sandberg G; Palme K; Bennett M
    Genes Dev; 2001 Oct; 15(20):2648-53. PubMed ID: 11641271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings.
    Garrido G; Ramón Guerrero J; Angel Cano E; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2002 Feb; 114(2):303-312. PubMed ID: 11903978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Auxin and Gibberellin in Controlling Lignin Formation in Primary Phloem Fibers and in Xylem of Coleus blumei Stems.
    Aloni R; Tollier MT; Monties B
    Plant Physiol; 1990 Dec; 94(4):1743-7. PubMed ID: 16667911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and control of phloem loading of indole-3-acetic acid in seedling cotyledons of Ricinus communis.
    Tamas IA; Davies PJ
    J Exp Bot; 2016 Aug; 67(15):4755-65. PubMed ID: 27371947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phloem Loading in Coleus blumei in the Absence of Carrier-Mediated Uptake of Export Sugar from the Apoplast.
    Turgeon R; Gowan E
    Plant Physiol; 1990 Nov; 94(3):1244-9. PubMed ID: 16667824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.