BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 24458292)

  • 1. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.
    Randviir EP; Brownson DA; Metters JP; Kadara RO; Banks CE
    Phys Chem Chem Phys; 2014 Mar; 16(10):4598-611. PubMed ID: 24458292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.
    Figueiredo-Filho LC; Brownson DA; Gómez-Mingot M; Iniesta J; Fatibello-Filho O; Banks CE
    Analyst; 2013 Nov; 138(21):6354-64. PubMed ID: 24010127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes.
    Slate AJ; Brownson DAC; Abo Dena AS; Smith GC; Whitehead KA; Banks CE
    Phys Chem Chem Phys; 2018 Aug; 20(30):20010-20022. PubMed ID: 30022207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry of Q-graphene.
    Randviir EP; Brownson DA; Gómez-Mingot M; Kampouris DK; Iniesta J; Banks CE
    Nanoscale; 2012 Oct; 4(20):6470-80. PubMed ID: 22961209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes.
    Bernalte E; Foster CW; Brownson DA; Mosna M; Smith GC; Banks CE
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27589815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Oxide Bulk-Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities.
    Rowley-Neale SJ; Brownson DAC; Smith G; Banks CE
    Biosensors (Basel); 2020 Mar; 10(3):. PubMed ID: 32204548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CVD graphene electrochemistry: biologically relevant molecules.
    Brownson DA; Gómez-Mingot M; Banks CE
    Phys Chem Chem Phys; 2011 Dec; 13(45):20284-8. PubMed ID: 21989626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.
    Rowley-Neale SJ; Brownson DA; Banks CE
    Nanoscale; 2016 Aug; 8(33):15241-51. PubMed ID: 27487988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CVD graphene vs. highly ordered pyrolytic graphite for use in electroanalytical sensing.
    Brownson DA; Gorbachev RV; Haigh SJ; Banks CE
    Analyst; 2012 Feb; 137(4):833-9. PubMed ID: 22182964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode.
    Ping J; Wu J; Wang Y; Ying Y
    Biosens Bioelectron; 2012 Apr; 34(1):70-6. PubMed ID: 22341755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical performance of graphene modified electrodes: an analytical perspective.
    Brownson DA; Foster CW; Banks CE
    Analyst; 2012 Apr; 137(8):1815-23. PubMed ID: 22403764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) explored as a potential electrochemical sensor for dopamine: surfactants significantly influence sensor capabilities.
    Khan AF; Brownson DAC; Foster CW; Smith GC; Banks CE
    Analyst; 2017 May; 142(10):1756-1764. PubMed ID: 28418064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis.
    Brownson DAC; Smith GC; Banks CE
    R Soc Open Sci; 2017 Nov; 4(11):171128. PubMed ID: 29291099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid.
    Baccarin M; Rowley-Neale SJ; Cavalheiro ÉTG; Smith GC; Banks CE
    Mikrochim Acta; 2019 Feb; 186(3):200. PubMed ID: 30796537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and utilisation of graphene for fabrication of electrochemical sensors.
    Lawal AT
    Talanta; 2015 Jan; 131():424-43. PubMed ID: 25281124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.
    Metters JP; Kadara RO; Banks CE
    Analyst; 2012 Feb; 137(4):896-902. PubMed ID: 22228309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure.
    Brownson DAC; Garcia-Miranda Ferrari A; Ghosh S; Kamruddin M; Iniesta J; Banks CE
    Nanoscale Adv; 2020 Nov; 2(11):5319-5328. PubMed ID: 36132042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screen printed graphite macroelectrodes for the direct electron transfer of cytochrome c.
    Gómez-Mingot M; Iniesta J; Montiel V; Kadara RO; Banks CE
    Analyst; 2011 May; 136(10):2146-50. PubMed ID: 21461416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.