These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 24458531)
1. Imbalance of Ca2+ and K+ fluxes in C6 glioma cells after PDT measured with scanning ion-selective electrode technique. Hu SL; Du P; Hu R; Li F; Feng H Lasers Med Sci; 2014 May; 29(3):1261-7. PubMed ID: 24458531 [TBL] [Abstract][Full Text] [Related]
2. Photodynamic therapy leads to death of C6 glioma cells partly through AMPAR. Du P; Hu S; Cheng Y; Li F; Li M; Li J; Yi L; Feng H Brain Res; 2012 Jan; 1433():153-9. PubMed ID: 22177774 [TBL] [Abstract][Full Text] [Related]
3. Calcium hyperexcitability in neurons cultured with glutamate receptor blockade. Obrietan K; Van den Pol AN J Neurophysiol; 1995 Apr; 73(4):1524-36. PubMed ID: 7643164 [TBL] [Abstract][Full Text] [Related]
4. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats. Bhardwaj A; Northington FJ; Ichord RN; Hanley DF; Traystman RJ; Koehler RC Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207 [TBL] [Abstract][Full Text] [Related]
5. NMDA and AMPA receptors mediate intracellular calcium increase in rat cortical astrocytes. Hu B; Sun SG; Tong ET Acta Pharmacol Sin; 2004 Jun; 25(6):714-20. PubMed ID: 15169621 [TBL] [Abstract][Full Text] [Related]
6. Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Alberdi E; Sánchez-Gómez MV; Marino A; Matute C Neurobiol Dis; 2002 Mar; 9(2):234-43. PubMed ID: 11895374 [TBL] [Abstract][Full Text] [Related]
7. Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency. Yoon WJ; Won SJ; Ryu BR; Gwag BJ J Neurochem; 2003 Apr; 85(2):525-33. PubMed ID: 12675929 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological and molecular characterization of glutamate receptors in the MIN6 pancreatic beta-cell line. Morley P; MacLean S; Gendron TF; Small DL; Tremblay R; Durkin JP; Mealing G Neurol Res; 2000 Jun; 22(4):379-85. PubMed ID: 10874687 [TBL] [Abstract][Full Text] [Related]
9. Augmentation by glycine and blockade by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) of responses to excitatory amino acids in slices of rat neocortex. Thomson AM Neuroscience; 1990; 39(1):69-79. PubMed ID: 1982468 [TBL] [Abstract][Full Text] [Related]
10. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ. Metzger F; Kulik A; Sendtner M; Ballanyi K J Neurophysiol; 2000 Jan; 83(1):50-9. PubMed ID: 10634852 [TBL] [Abstract][Full Text] [Related]
11. Lead-Induced ERK Activation Is Mediated by GluR2 Non-containing AMPA Receptor in Cortical Neurons. Ishida K; Kotake Y; Sanoh S; Ohta S Biol Pharm Bull; 2017; 40(3):303-309. PubMed ID: 28250271 [TBL] [Abstract][Full Text] [Related]
12. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. Vargová L; Jendelová P; Chvátal A; Syková E J Cereb Blood Flow Metab; 2001 Sep; 21(9):1077-89. PubMed ID: 11524612 [TBL] [Abstract][Full Text] [Related]
13. AMPA-mediated excitotoxicity in oligodendrocytes: role for Na(+)-K(+)-Cl(-) co-transport and reversal of Na(+)/Ca(2+) exchanger. Chen H; Kintner DB; Jones M; Matsuda T; Baba A; Kiedrowski L; Sun D J Neurochem; 2007 Sep; 102(6):1783-1795. PubMed ID: 17490438 [TBL] [Abstract][Full Text] [Related]
14. Autoradiographic characterization and localization of quisqualate binding sites in rat brain using the antagonist [3H]6-cyano-7-nitroquinoxaline-2,3-dione: comparison with (R,S)-[3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites. Nielsen EO; Drejer J; Cha JH; Young AB; Honoré T J Neurochem; 1990 Feb; 54(2):686-95. PubMed ID: 1967632 [TBL] [Abstract][Full Text] [Related]
15. Age-related functional changes of the glutamate receptor channels in rat Meynert neurones. Akaike N; Rhee JS J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):665-81. PubMed ID: 9401973 [TBL] [Abstract][Full Text] [Related]
16. Glutamate-stimulated production of inositol phosphates is mediated by Ca2+ influx in oligodendrocyte progenitors. Liu HN; Molina-Holgado E; Almazan G Eur J Pharmacol; 1997 Nov; 338(3):277-87. PubMed ID: 9424022 [TBL] [Abstract][Full Text] [Related]
17. Effects of glutamate receptor agonists and antagonists on Ca2+ uptake in rat hippocampal slices lesioned by glucose deprivation or by kainate. Alici K; Gloveli T; Schmitz D; Heinemann U Neuroscience; 1997 Mar; 77(1):97-109. PubMed ID: 9044378 [TBL] [Abstract][Full Text] [Related]
18. CNQX facilitates inhibitory synaptic transmission in rat hypoglossal nucleus. Han L; Mu S; He Z; Wang Z; Qu J; Ye W; Zhang J Brain Res; 2016 Apr; 1637():71-80. PubMed ID: 26902496 [TBL] [Abstract][Full Text] [Related]
19. CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses. Li Q; Burrell BD Brain Res; 2008 Sep; 1228():43-57. PubMed ID: 18601913 [TBL] [Abstract][Full Text] [Related]
20. CNQX increases GABA-mediated synaptic transmission in the cerebellum by an AMPA/kainate receptor-independent mechanism. Brickley SG; Farrant M; Swanson GT; Cull-Candy SG Neuropharmacology; 2001 Nov; 41(6):730-6. PubMed ID: 11640927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]