These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24458535)

  • 21. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophoretic deposition of hydroxyapatite-shrimp crusts nanocomposite thin films for bone implant studies.
    Ismail RA; Hamoudi WK; Abbas HF
    IET Nanobiotechnol; 2018 Sep; 12(6):714-721. PubMed ID: 30104443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
    Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-by-layer assembly of peptide based bioorganic-inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells.
    Romanelli SM; Fath KR; Phekoo AP; Knoll GA; Banerjee IA
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():316-28. PubMed ID: 25842141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).
    Zhang P; Hong Z; Yu T; Chen X; Jing X
    Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS
    Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and properties of nano-hydroxyapatite/PCL-PEG-PCL composite membranes for tissue engineering applications.
    Fu SZ; Wang XH; Guo G; Shi S; Fan M; Liang H; Luo F; Qian ZY
    J Biomed Mater Res B Appl Biomater; 2011 Apr; 97(1):74-83. PubMed ID: 21290585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).
    Liuyun J; Lixin J; Chengdong X; Lijuan X; Ye L
    J Biomater Appl; 2016 Jan; 30(6):750-8. PubMed ID: 25940015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of 3D Scaffolds with Nano-Hydroxyapatite for Improving the Preosteoblast Cell-Biological Performance.
    Roh HS; Myung SW; Jung SC; Kim BH
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5585-8. PubMed ID: 26369121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-D-L-lactide/nano-hydroxyapatite composite scaffolds.
    Chen L; Tang CY; Tsui CP; Chen DZ
    J Mech Behav Biomed Mater; 2013 Jun; 22():41-50. PubMed ID: 23639839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyurethane/nano-hydroxyapatite composite films as osteogenic platforms.
    Jackson BK; Bow AJ; Kannarpady G; Biris AS; Anderson DE; Dhar M; Bourdo SE
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1426-1443. PubMed ID: 29649935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA; Azami M; Mozafari M
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):310-6. PubMed ID: 21310596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.