These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24458535)

  • 41. Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone blend scaffold for bone tissue engineering applications.
    Remya KR; Joseph J; Mani S; John A; Varma HK; Ramesh P
    J Biomed Nanotechnol; 2013 Sep; 9(9):1483-94. PubMed ID: 23980497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds.
    Fang B; Wan YZ; Tang TT; Gao C; Dai KR
    Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium.
    Huang Y; Ding Q; Han S; Yan Y; Pang X
    J Mater Sci Mater Med; 2013 Aug; 24(8):1853-64. PubMed ID: 23686354
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vitro Biocompability/Osteogenesis and In Vivo Bone Formation Evalution of Peptide-Decorated Apatite Nanocomposites Assisted via Polydopamine.
    Deng Y; Sun Y; Bai Y; Gao X; Zhang H; Xu A; Huang E; Deng F; Wei S
    J Biomed Nanotechnol; 2016 Apr; 12(4):602-18. PubMed ID: 27301188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration.
    Dai Z; Dang M; Zhang W; Murugan S; Teh SW; Pan H
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1898-1907. PubMed ID: 31066314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis.
    Chiu CK; Lee DJ; Chen H; Chow LC; Ko CC
    J Mater Sci Mater Med; 2015 Feb; 26(2):92. PubMed ID: 25649517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.
    Nordin JA; Prajitno DH; Saidin S; Nur H; Hermawan H
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():294-9. PubMed ID: 25842138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications.
    de Oliveira AA; de Souza DA; Dias LL; de Carvalho SM; Mansur HS; de Magalhães Pereira M
    Biomed Mater; 2013 Apr; 8(2):025011. PubMed ID: 23502808
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering.
    Kareem MM; Tanner KE
    J Mater Sci Mater Med; 2020 Apr; 31(4):38. PubMed ID: 32253587
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles.
    Tong HW; Wang M; Li ZY; Lu WW
    Biomed Mater; 2010 Oct; 5(5):054111. PubMed ID: 20876957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.
    Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
    Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.