BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24458597)

  • 1. α-Fe2O3 cubes with high visible-light-activated photoelectrochemical activity towards glucose: hydrothermal synthesis assisted by a hydrophobic ionic liquid.
    Xu L; Xia J; Wang L; Qian J; Li H; Wang K; Sun K; He M
    Chemistry; 2014 Feb; 20(8):2244-53. PubMed ID: 24458597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid assisted synthesis and photocatalytic properties of α-Fe2O3 hollow microspheres.
    Xu L; Xia J; Wang K; Wang L; Li H; Xu H; Huang L; He M
    Dalton Trans; 2013 May; 42(18):6468-77. PubMed ID: 23471128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe
    Wang P; Dong F; Liu M; He H; Huo T; Zhou L; Zhang W
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22455-22463. PubMed ID: 29460249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light-driven photocatalytic properties of simply synthesized α-Iron(III)oxide nanourchins.
    Jiao Y; Liu Y; Qu F; Umar A; Wu X
    J Colloid Interface Sci; 2015 Aug; 451():93-100. PubMed ID: 25890117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Synthesis of Hollow α-Fe
    Yin H; Zhao Y; Hua Q; Zhang J; Zhang Y; Xu X; Long Y; Tang J; Wang F
    Front Chem; 2019; 7():58. PubMed ID: 30873398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature synthesis of α-Fe2O3 hexagonal nanoparticles for environmental remediation and smart sensor applications.
    Umar A; Akhtar MS; Dar GN; Baskoutas S
    Talanta; 2013 Nov; 116():1060-6. PubMed ID: 24148516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings.
    Jia CJ; Sun LD; Luo F; Han XD; Heyderman LJ; Yan ZG; Yan CH; Zheng K; Zhang Z; Takano M; Hayashi N; Eltschka M; Kläui M; Rüdiger U; Kasama T; Cervera-Gontard L; Dunin-Borkowski RE; Tzvetkov G; Raabe J
    J Am Chem Soc; 2008 Dec; 130(50):16968-77. PubMed ID: 19053430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photoelectrochemical activity of α-Fe
    Chen Y; Jiang D; Li L; Li Z; Li Q; Shi R; Li J; Wang LN
    Nanotechnology; 2020 Apr; 31(17):174002. PubMed ID: 31842002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of core-shell α-Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries.
    Chen M; Li W; Shen X; Diao G
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4514-23. PubMed ID: 24598727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties.
    Lian J; Duan X; Ma J; Peng P; Kim T; Zheng W
    ACS Nano; 2009 Nov; 3(11):3749-61. PubMed ID: 19877695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Active Sites on Irregular Morphological α-Fe
    Sun J; Xia W; Zheng Q; Zeng X; Liu W; Liu G; Wang P
    ACS Omega; 2020 Jun; 5(21):12339-12345. PubMed ID: 32548417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.
    Wang GL; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal evolution, optical and electrochemical properties of hierarchical porous hematite nanoarchitectures.
    Zhu W; Cui X; Liu X; Zhang L; Huang JQ; Piao X; Zhang Q
    Nanoscale Res Lett; 2013 Jan; 8(1):2. PubMed ID: 23279781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical properties of Fe2O3-Nb2O5 films prepared by sol-gel method.
    Miyake H; Kozuka H
    J Phys Chem B; 2005 Sep; 109(38):17951-6. PubMed ID: 16853304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation.
    Pradhan GK; Padhi DK; Parida KM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9101-10. PubMed ID: 23962068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.