BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 24459107)

  • 21. Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis.
    Lee CY; Cantle JP; Yang XW
    FEBS J; 2013 Sep; 280(18):4382-94. PubMed ID: 23829302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors.
    Crotti A; Benner C; Kerman BE; Gosselin D; Lagier-Tourenne C; Zuccato C; Cattaneo E; Gage FH; Cleveland DW; Glass CK
    Nat Neurosci; 2014 Apr; 17(4):513-21. PubMed ID: 24584051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of post-translational modifications of huntingtin in the pathogenesis of Huntington's disease.
    Wang Y; Lin F; Qin ZH
    Neurosci Bull; 2010 Apr; 26(2):153-62. PubMed ID: 20332821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of tau in the pathological process and clinical expression of Huntington's disease.
    Vuono R; Winder-Rhodes S; de Silva R; Cisbani G; Drouin-Ouellet J; ; Spillantini MG; Cicchetti F; Barker RA
    Brain; 2015 Jul; 138(Pt 7):1907-18. PubMed ID: 25953777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species.
    O'Regan GC; Farag SH; Casey CS; Wood-Kaczmar A; Pocock JM; Tabrizi SJ; Andre R
    J Neuroinflammation; 2021 Apr; 18(1):94. PubMed ID: 33874957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The therapeutic potential of G-protein coupled receptors in Huntington's disease.
    Dowie MJ; Scotter EL; Molinari E; Glass M
    Pharmacol Ther; 2010 Nov; 128(2):305-23. PubMed ID: 20708032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustained effects of nonallele-specific Huntingtin silencing.
    Drouet V; Perrin V; Hassig R; Dufour N; Auregan G; Alves S; Bonvento G; Brouillet E; Luthi-Carter R; Hantraye P; Déglon N
    Ann Neurol; 2009 Mar; 65(3):276-85. PubMed ID: 19334076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Huntington's Disease.
    Finkbeiner S
    Cold Spring Harb Perspect Biol; 2011 Jun; 3(6):. PubMed ID: 21441583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurobiology of Huntington's Disease.
    De Souza RA; Leavitt BR
    Curr Top Behav Neurosci; 2015; 22():81-100. PubMed ID: 25205327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression.
    Weiss A; Träger U; Wild EJ; Grueninger S; Farmer R; Landles C; Scahill RI; Lahiri N; Haider S; Macdonald D; Frost C; Bates GP; Bilbe G; Kuhn R; Andre R; Tabrizi SJ
    J Clin Invest; 2012 Oct; 122(10):3731-6. PubMed ID: 22996692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lowering Mutant Huntingtin Using Tricyclo-DNA Antisense Oligonucleotides As a Therapeutic Approach for Huntington's Disease.
    Imbert M; Blandel F; Leumann C; Garcia L; Goyenvalle A
    Nucleic Acid Ther; 2019 Oct; 29(5):256-265. PubMed ID: 31184975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Fresh Look at Huntingtin mRNA Processing in Huntington's Disease.
    Romo L; Mohn ES; Aronin N
    J Huntingtons Dis; 2018; 7(2):101-108. PubMed ID: 29865084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the effect of sequence length and composition on allele-selective inhibition of human huntingtin expression by single-stranded silencing RNAs.
    Hu J; Liu J; Yu D; Aiba Y; Lee S; Pendergraff H; Boubaker J; Artates JW; Lagier-Tourenne C; Lima WF; Swayze EE; Prakash TP; Corey DR
    Nucleic Acid Ther; 2014 Jun; 24(3):199-209. PubMed ID: 24694346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS
    J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Huntingtin-protein interactions and the pathogenesis of Huntington's disease.
    Li SH; Li XJ
    Trends Genet; 2004 Mar; 20(3):146-54. PubMed ID: 15036808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA.
    Wang YL; Liu W; Wada E; Murata M; Wada K; Kanazawa I
    Neurosci Res; 2005 Nov; 53(3):241-9. PubMed ID: 16095740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease.
    Tellone E; Galtieri A; Ficarra S
    Curr Med Chem; 2020; 27(31):5137-5158. PubMed ID: 31223078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Sardi SP; Mastis B; Richards AR; Treleaven CM; Taksir T; Misra K; Cheng SH; Shihabuddin LS
    Hum Gene Ther; 2014 May; 25(5):461-74. PubMed ID: 24484067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits.
    DiFiglia M; Sena-Esteves M; Chase K; Sapp E; Pfister E; Sass M; Yoder J; Reeves P; Pandey RK; Rajeev KG; Manoharan M; Sah DW; Zamore PD; Aronin N
    Proc Natl Acad Sci U S A; 2007 Oct; 104(43):17204-9. PubMed ID: 17940007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel target for Huntington's disease: ERK at the crossroads of signaling. The ERK signaling pathway is implicated in Huntington's disease and its upregulation ameliorates pathology.
    Bodai L; Marsh JL
    Bioessays; 2012 Feb; 34(2):142-8. PubMed ID: 22334892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.