BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24459859)

  • 61. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Parallel opsin switches in multiple cone types of the starry flounder retina: tuning visual pigment composition for a demersal life style.
    Savelli I; Novales Flamarique I; Iwanicki T; Taylor JS
    Sci Rep; 2018 Mar; 8(1):4763. PubMed ID: 29555918
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Distribution of blue-sensitive photoreceptors in amphibian retinas.
    Takahashi Y; Hisatomi O; Sakakibara S; Tokunaga F; Tsukahara Y
    FEBS Lett; 2001 Jul; 501(2-3):151-5. PubMed ID: 11470275
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study.
    Sillman AJ; Govardovskii VI; Röhlich P; Southard JA; Loew ER
    J Comp Physiol A; 1997 Aug; 181(2):89-101. PubMed ID: 9251253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. VISUAL PIGMENTS IN SINGLE RODS AND CONES OF THE HUMAN RETINA. DIRECT MEASUREMENTS REVEAL MECHANISMS OF HUMAN NIGHT AND COLOR VISION.
    BROWN PK; WALD G
    Science; 1964 Apr; 144(3614):45-52. PubMed ID: 14107460
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photoreceptors and eyes of pikeperch Sander lucioperca, pike Esox lucius, perch Perca fluviatilis and roach Rutilus rutilus from a clear and a brown lake.
    Jokela-Määttä M; Viljanen M; Nevala N; Donner K; Brönmark C
    J Fish Biol; 2019 Jul; 95(1):200-213. PubMed ID: 30047140
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types.
    Kawamura S; Kasagi S; Kasai D; Tezuka A; Shoji A; Takahashi A; Imai H; Kawata M
    Vision Res; 2016 Oct; 127():67-73. PubMed ID: 27476645
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sensitivity of cones from a cyprinid fish (Danio aequipinnatus) to ultraviolet and visible light.
    Palacios AG; Goldsmith TH; Bernard GD
    Vis Neurosci; 1996; 13(3):411-21. PubMed ID: 8782369
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of modified chromophores on the spectral sensitivity of salamander, squirrel and macaque cones.
    Makino CL; Kraft TW; Mathies RA; Lugtenburg J; Miley ME; van der Steen R; Baylor DA
    J Physiol; 1990 May; 424():545-60. PubMed ID: 2391661
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Visual pigments and optical habitats of surfperch (Embiotocidae) in the California kelp forest.
    Cummings ME; Partridge JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2001 Dec; 187(11):875-89. PubMed ID: 11866186
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Photoreceptors, visual pigments, and ellipsosomes in the killifish, Fundulus heteroclitus: a microspectrophotometric and histological study.
    Flamarique IN; Hárosi FI
    Vis Neurosci; 2000; 17(3):403-20. PubMed ID: 10910108
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Response univariance in bull-frog rods with two visual pigments.
    Firsov ML; Govardovskii VI; Donner K
    Vision Res; 1994 Apr; 34(7):839-47. PubMed ID: 8160397
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In search of the visual pigment template.
    Govardovskii VI; Fyhrquist N; Reuter T; Kuzmin DG; Donner K
    Vis Neurosci; 2000; 17(4):509-28. PubMed ID: 11016572
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri.
    Shand J; Hart NS; Thomas N; Partridge JC
    J Exp Biol; 2002 Dec; 205(Pt 23):3661-7. PubMed ID: 12409492
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors.
    Hart NS; Vorobyev M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):381-92. PubMed ID: 15711964
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New insights into retinoid metabolism and cycling within the retina.
    Tang PH; Kono M; Koutalos Y; Ablonczy Z; Crouch RK
    Prog Retin Eye Res; 2013 Jan; 32():48-63. PubMed ID: 23063666
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interspecific variation in the visual pigments of deep-sea fishes.
    Partridge JC; Shand J; Archer SN; Lythgoe JN; van Groningen-Luyben WA
    J Comp Physiol A; 1989 Jan; 164(4):513-29. PubMed ID: 2926694
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Two different visual pigments in one retinal cone cell.
    Röhlich P; van Veen T; Szél A
    Neuron; 1994 Nov; 13(5):1159-66. PubMed ID: 7946352
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Visual pigments of goldfish cones. Spectral properties and dichroism.
    Hárosi FI; MacNichol EF
    J Gen Physiol; 1974 Mar; 63(3):279-304. PubMed ID: 4817352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.