These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24460074)

  • 1. Simple ligand exchange reactions enabling excellent dispersibility and stability of magnetic nanoparticles in polar organic, aromatic, and protic solvents.
    Wang X; Tilley RD; Watkins JJ
    Langmuir; 2014 Feb; 30(6):1514-21. PubMed ID: 24460074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of monodisperse magnetic nanoparticles.
    Lattuada M; Hatton TA
    Langmuir; 2007 Feb; 23(4):2158-68. PubMed ID: 17279708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly cross-linked and biocompatible polyphosphazene-coated superparamagnetic Fe3O4 nanoparticles for magnetic resonance imaging.
    Hu Y; Meng L; Niu L; Lu Q
    Langmuir; 2013 Jul; 29(29):9156-63. PubMed ID: 23795597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding mercapto ligand exchange on the surface of FePt nanoparticles.
    Bagaria HG; Ada ET; Shamsuzzoha M; Nikles DE; Johnson DT
    Langmuir; 2006 Aug; 22(18):7732-7. PubMed ID: 16922557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF(4):Yb(3+)/Er(3+) nanoparticles.
    Johnson NJ; Sangeetha NM; Boyer JC; van Veggel FC
    Nanoscale; 2010 May; 2(5):771-7. PubMed ID: 20648323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCM study of the solvent and substituent effects on the conformers, intramolecular hydrogen bonds and bond dissociation enthalpies of 2-substituted phenols.
    Lithoxoidou AT; Bakalbassis EG
    J Phys Chem A; 2005 Jan; 109(2):366-77. PubMed ID: 16833355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.
    Tóth IY; Szekeres M; Turcu R; Sáringer S; Illés E; Nesztor D; Tombácz E
    Langmuir; 2014 Dec; 30(51):15451-61. PubMed ID: 25517214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.
    Davis K; Qi B; Witmer M; Kitchens CL; Powell BA; Mefford OT
    Langmuir; 2014 Sep; 30(36):10918-25. PubMed ID: 25137089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of magnetic nanoparticles capped by oleic acids: characterization and colloidal stability in polar solvents.
    Lee SY; Harris MT
    J Colloid Interface Sci; 2006 Jan; 293(2):401-8. PubMed ID: 16054635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic gold nanoparticles adaptable for hydrophobic solvents.
    Sekiguchi S; Niikura K; Matsuo Y; Ijiro K
    Langmuir; 2012 Apr; 28(13):5503-7. PubMed ID: 22428570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Fe3O4@amino cellulose nanoparticles in organic media--heterogeneous ligands for atom transfer radical polymerizations.
    Fidale LC; Nikolajski M; Rudolph T; Dutz S; Schacher FH; Heinze T
    J Colloid Interface Sci; 2013 Jan; 390(1):25-33. PubMed ID: 23079041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic study of transfection efficiency and cytotoxicity in HeLa cells using iron oxide nanoparticles prepared with organic and inorganic bases.
    Calmon MF; de Souza AT; Candido NM; Raposo MI; Taboga S; Rahal P; Nery JG
    Colloids Surf B Biointerfaces; 2012 Dec; 100():177-84. PubMed ID: 22766295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium Sulfate Nanoparticles with Unusual Dispersibility in Organic Solvents for Transparent Film Processing.
    Leukel S; Panthöfer M; Mondeshki M; Schärtl W; Plana-Ruiz S; Tremel W
    Langmuir; 2018 Jun; 34(24):7096-7105. PubMed ID: 29852740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid).
    Lin W; Fritz K; Guerin G; Bardajee GR; Hinds S; Sukhovatkin V; Sargent EH; Scholes GD; Winnik MA
    Langmuir; 2008 Aug; 24(15):8215-9. PubMed ID: 18597501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols.
    Cai W; Wan J
    J Colloid Interface Sci; 2007 Jan; 305(2):366-70. PubMed ID: 17084856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers.
    Azzam T; Bronstein L; Eisenberg A
    Langmuir; 2008 Jun; 24(13):6521-9. PubMed ID: 18484759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using hydrogel microparticles to transfer hydrophilic nanoparticles and enzymes to organic media via stepwise solvent exchange.
    Bai S; Wu C; Gawlitza K; von Klitzing R; Ansorge-Schumacher MB; Wang D
    Langmuir; 2010 Aug; 26(15):12980-7. PubMed ID: 20590132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles.
    Na HB; Palui G; Rosenberg JT; Ji X; Grant SC; Mattoussi H
    ACS Nano; 2012 Jan; 6(1):389-99. PubMed ID: 22176202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.