BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24460091)

  • 1. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level.
    Cui Z; Chen Y; Kong X; Zhang C; Hua Y
    J Agric Food Chem; 2014 Feb; 62(7):1634-42. PubMed ID: 24460091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions.
    Liu F; Tang CH
    J Agric Food Chem; 2013 Sep; 61(37):8888-98. PubMed ID: 23977961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties.
    Wang JM; Xia N; Yang XQ; Yin SW; Qi JR; He XT; Yuan DB; Wang LJ
    J Agric Food Chem; 2012 Mar; 60(12):3302-10. PubMed ID: 22372478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emulsifying properties of soy protein nanoparticles: influence of the protein concentration and/or emulsification process.
    Liu F; Tang CH
    J Agric Food Chem; 2014 Mar; 62(12):2644-54. PubMed ID: 24601531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze-thaw stability of the resultant Pickering emulsions.
    Zhu XF; Zheng J; Liu F; Qiu CY; Lin WF; Tang CH
    Food Funct; 2017 Aug; 8(8):2974-2981. PubMed ID: 28745770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat-Induced changes occurring in oil/water emulsions stabilized by soy glycinin and β-conglycinin.
    Keerati-u-rai M; Corredig M
    J Agric Food Chem; 2010 Aug; 58(16):9171-80. PubMed ID: 23654241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties.
    Xu HN; Liu Y; Zhang L
    Soft Matter; 2015 Aug; 11(29):5926-32. PubMed ID: 26119502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.
    Guo F; Xiong YL; Qin F; Jian H; Huang X; Chen J
    J Food Sci; 2015 Feb; 80(2):C279-87. PubMed ID: 25586667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes of soy proteins at the oil-water interface studied by fluorescence spectroscopy.
    Keerati-u-rai M; Miriani M; Iametti S; Bonomi F; Corredig M
    Colloids Surf B Biointerfaces; 2012 May; 93():41-8. PubMed ID: 22227018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of solid particle content on properties of o/w Pickering emulsions.
    Frelichowska J; Bolzinger MA; Chevalier Y
    J Colloid Interface Sci; 2010 Nov; 351(2):348-56. PubMed ID: 20800850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of complex interface and stability of oil-in-water (O/W) emulsion prepared by soy lipophilic protein nanoparticles.
    Gao ZM; Wang JM; Wu NN; Wan ZL; Guo J; Yang XQ; Yin SW
    J Agric Food Chem; 2013 Aug; 61(32):7838-47. PubMed ID: 23865496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI
    Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin.
    Jiménez-Flores R; Ye A; Singh H
    J Agric Food Chem; 2005 May; 53(10):4213-9. PubMed ID: 15884863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.
    Zhai J; Hoffmann SV; Day L; Lee TH; Augustin MA; Aguilar MI; Wooster TJ
    Langmuir; 2012 Feb; 28(5):2357-67. PubMed ID: 22201548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and water-holding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: influence of thermal treatments before and/or after emulsification.
    Tang CH; Chen L; Foegeding EA
    J Agric Food Chem; 2011 Apr; 59(8):4071-7. PubMed ID: 21381784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of salt content and type on emulsifying properties of hull soy soluble polysaccharides at acidic pH.
    Cabezas DM; Ortiz MP; Wagner JR; Porfiri MC
    Food Res Int; 2017 Jul; 97():62-70. PubMed ID: 28578065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological changes in adsorbed protein films at the oil-water interface subjected to compression, expansion, and heat processing.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2008 Mar; 24(5):1979-88. PubMed ID: 18211106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soy/whey protein isolates: interfacial properties and effects on the stability of oil-in-water emulsions.
    Zhang X; Zhang S; Xie F; Han L; Li L; Jiang L; Qi B; Li Y
    J Sci Food Agric; 2021 Jan; 101(1):262-271. PubMed ID: 32627183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.