BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24460144)

  • 1. Nanodynamics of dendritic core-multishell nanocarriers.
    Boreham A; Pfaff M; Fleige E; Haag R; Alexiev U
    Langmuir; 2014 Feb; 30(6):1686-95. PubMed ID: 24460144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration of normal, damaged and diseased skin--an in vitro study on dendritic core-multishell nanotransporters.
    Alnasif N; Zoschke C; Fleige E; Brodwolf R; Boreham A; Rühl E; Eckl KM; Merk HF; Hennies HC; Alexiev U; Haag R; Küchler S; Schäfer-Korting M
    J Control Release; 2014 Jul; 185():45-50. PubMed ID: 24727058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-responsive dendritic core-multishell nanocarriers.
    Fleige E; Achazi K; Schaletzki K; Triemer T; Haag R
    J Control Release; 2014 Jul; 185():99-108. PubMed ID: 24768791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles for skin penetration enhancement--a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles.
    Küchler S; Radowski MR; Blaschke T; Dathe M; Plendl J; Haag R; Schäfer-Korting M; Kramer KD
    Eur J Pharm Biopharm; 2009 Feb; 71(2):243-50. PubMed ID: 18796329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of nanocarrier type and size on skin delivery of hydrophilic agents.
    Küchler S; Abdel-Mottaleb M; Lamprecht A; Radowski MR; Haag R; Schäfer-Korting M
    Int J Pharm; 2009 Jul; 377(1-2):169-72. PubMed ID: 19439166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal-catalyzed one-pot synthesis of water-soluble dendritic molecular nanocarriers.
    Chen G; Guan Z
    J Am Chem Soc; 2004 Mar; 126(9):2662-3. PubMed ID: 14995158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin penetration enhancement of core-multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy.
    Haag SF; Fleige E; Chen M; Fahr A; Teutloff C; Bittl R; Lademann J; Schäfer-Korting M; Haag R; Meinke MC
    Int J Pharm; 2011 Sep; 416(1):223-8. PubMed ID: 21745556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive unimolecular micelles with a hydrophobic dendritic core and a double hydrophilic block copolymer shell.
    Luo S; Ling C; Hu X; Liu X; Chen S; Han M; Xia J
    J Colloid Interface Sci; 2011 Jan; 353(1):76-82. PubMed ID: 20932538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular aggregates of water soluble dendritic polyglycerol architectures for the solubilization of hydrophobic compounds.
    Kurniasih IN; Liang H; Rabe JP; Haag R
    Macromol Rapid Commun; 2010 Sep; 31(17):1516-20. PubMed ID: 21567560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation mechanism of molecular nanocarriers based on unimolecular micelle forming dendritic core-shell structural polymers.
    Zou J; Zhao Y; Shi W
    J Phys Chem B; 2006 Feb; 110(6):2638-42. PubMed ID: 16471865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs.
    Walker KA; Stumbé JF; Haag R
    Polymers (Basel); 2016 May; 8(5):. PubMed ID: 30979288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bifunctional nanocarrier based on amphiphilic hyperbranched polyglycerol derivatives.
    Kurniasih IN; Liang H; Kumar S; Mohr A; Sharma SK; Rabe JP; Haag R
    J Mater Chem B; 2013 Aug; 1(29):3569-3577. PubMed ID: 32261172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions.
    Weiss J; Laschewsky A
    Langmuir; 2011 Apr; 27(8):4465-73. PubMed ID: 21391656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-Responsive Nanocarrier for Controlled Release of Drugs in Inflammatory Skin Diseases.
    Rajes K; Walker KA; Hadam S; Zabihi F; Rancan F; Vogt A; Haag R
    Pharmaceutics; 2020 Dec; 13(1):. PubMed ID: 33383706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.
    Ben Yehuda Greenwald M; Ben Sasson S; Bianco-Peled H
    J Microencapsul; 2013; 30(6):580-8. PubMed ID: 23489012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs.
    Rajes K; Walker KA; Hadam S; Zabihi F; Ibrahim-Bacha J; Germer G; Patoka P; Wassermann B; Rancan F; Rühl E; Vogt A; Haag R
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2485-2495. PubMed ID: 33905661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Adhesive Nanocarriers Based on Mussel-Inspired Polyglycerols for the Application onto Mucosal Tissues.
    Rajes K; Nölte P; Yapto CV; Danker K; Dommisch H; Haag R
    Pharmaceutics; 2022 Apr; 14(5):. PubMed ID: 35631526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red.
    Sutter M; Oliveira S; Sanders NN; Lucas B; van Hoek A; Hink MA; Visser AJ; De Smedt SC; Hennink WE; Jiskoot W
    J Fluoresc; 2007 Mar; 17(2):181-92. PubMed ID: 17294134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Ca(2+) switch of the neuronal Ca(2+) sensor GCAP2 by time-resolved fluorescence spectroscopy.
    Kollmann H; Becker SF; Shirdel J; Scholten A; Ostendorp A; Lienau C; Koch KW
    ACS Chem Biol; 2012 Jun; 7(6):1006-14. PubMed ID: 22409623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule studies of diffusion by oligomer-bound dyes in organically modified sol-gel-derived silicate films.
    Martin-Brown SA; Fu Y; Saroja G; Collinson MM; Higgins DA
    Anal Chem; 2005 Jan; 77(2):486-94. PubMed ID: 15649044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.