These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24460210)

  • 1. Pathway analysis for drug repositioning based on public database mining.
    Pan Y; Cheng T; Wang Y; Bryant SH
    J Chem Inf Model; 2014 Feb; 54(2):407-18. PubMed ID: 24460210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining heterogeneous network for drug repositioning using phenotypic information extracted from social media and pharmaceutical databases.
    Yang CC; Zhao M
    Artif Intell Med; 2019 May; 96():80-92. PubMed ID: 31164213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EK-DRD: A Comprehensive Database for Drug Repositioning Inspired by Experimental Knowledge.
    Zhao C; Dai X; Li Y; Guo Q; Zhang J; Zhang X; Wang L
    J Chem Inf Model; 2019 Sep; 59(9):3619-3624. PubMed ID: 31433187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug repositioning for diabetes based on 'omics' data mining.
    Zhang M; Luo H; Xi Z; Rogaeva E
    PLoS One; 2015; 10(5):e0126082. PubMed ID: 25946000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of drug indications based on chemical interactions and chemical similarities.
    Huang G; Lu Y; Lu C; Zheng M; Cai YD
    Biomed Res Int; 2015; 2015():584546. PubMed ID: 25821813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DrPOCS: Drug Repositioning Based on Projection Onto Convex Sets.
    Wang YY; Cui C; Qi L; Yan H; Zhao XM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):154-162. PubMed ID: 29993698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Text Mining and Data Modeling of Karyotypes to aid in Drug Repurposing Efforts.
    Abrams ZB; Peabody AL; Heerema NA; Payne PR
    Stud Health Technol Inform; 2015; 216():1037. PubMed ID: 26262336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring new drug indications using the complementarity between clinical disease signatures and drug effects.
    Jang D; Lee S; Lee J; Kim K; Lee D
    J Biomed Inform; 2016 Feb; 59():248-57. PubMed ID: 26707452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug Repositioning for Alzheimer's Disease Based on Systematic 'omics' Data Mining.
    Zhang M; Schmitt-Ulms G; Sato C; Xi Z; Zhang Y; Zhou Y; St George-Hyslop P; Rogaeva E
    PLoS One; 2016; 11(12):e0168812. PubMed ID: 28005991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Repositioning by Mining Adverse Event Data in ClinicalTrials.gov.
    Su EW
    Methods Mol Biol; 2019; 1903():61-72. PubMed ID: 30547436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis.
    Toro-Domínguez D; Carmona-Sáez P; Alarcón-Riquelme ME
    Arthritis Res Ther; 2017 Mar; 19(1):54. PubMed ID: 28284231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phenome-guided drug repositioning through a latent variable model.
    Bisgin H; Liu Z; Fang H; Kelly R; Xu X; Tong W
    BMC Bioinformatics; 2014 Aug; 15(1):267. PubMed ID: 25103881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network.
    Jadamba E; Shin M
    Biomed Res Int; 2016; 2016():7147039. PubMed ID: 28127549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug repurposing by integrated literature mining and drug-gene-disease triangulation.
    Sun P; Guo J; Winnenburg R; Baumbach J
    Drug Discov Today; 2017 Apr; 22(4):615-619. PubMed ID: 27780789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repositioning in SLE: crowd-sourcing, literature-mining and Big Data analysis.
    Grammer AC; Ryals MM; Heuer SE; Robl RD; Madamanchi S; Davis LS; Lauwerys B; Catalina MD; Lipsky PE
    Lupus; 2016 Sep; 25(10):1150-70. PubMed ID: 27497259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Drug Discovery in Chemotherapy-induced Alopecia via Text Mining and Biomedical Databases.
    Zhang N; Xu W; Wang S; Qiao Y; Zhang X
    Clin Ther; 2019 May; 41(5):972-980.e8. PubMed ID: 31030996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Potential Drugs for Breast Cancer based on miRNA and Tissue Specificity.
    Yu L; Zhao J; Gao L
    Int J Biol Sci; 2018; 14(8):971-982. PubMed ID: 29989066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ANTENNA, a Multi-Rank, Multi-Layered Recommender System for Inferring Reliable Drug-Gene-Disease Associations: Repurposing Diazoxide as a Targeted Anti-Cancer Therapy.
    Wang A; Lim H; Cheng SY; Xie L
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1960-1967. PubMed ID: 29993812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer.
    Chen HR; Sherr DH; Hu Z; DeLisi C
    BMC Med Genomics; 2016 Jul; 9(1):51. PubMed ID: 27475327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.