BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24460214)

  • 21. Probing the intracellular refractive index and molecular interaction of gold nanoparticles in HeLa cells using single particle spectroscopy.
    Mohsin ASM; Salim MB
    Int J Nanomedicine; 2018; 13():6019-6028. PubMed ID: 30323589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photothermal absorption correlation spectroscopy.
    Octeau V; Cognet L; Duchesne L; Lasne D; Schaeffer N; Fernig DG; Lounis B
    ACS Nano; 2009 Feb; 3(2):345-50. PubMed ID: 19236070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold nanoparticles in biology: beyond toxicity to cellular imaging.
    Murphy CJ; Gole AM; Stone JW; Sisco PN; Alkilany AM; Goldsmith EC; Baxter SC
    Acc Chem Res; 2008 Dec; 41(12):1721-30. PubMed ID: 18712884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogeneous immunoassays by using photon burst counting technique of single gold nanoparticles.
    Lan T; Wang J; Dong C; Huang X; Ren J
    Talanta; 2015 Jan; 132():698-704. PubMed ID: 25476367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-particle light scattering: imaging and dynamical fluctuations in the polarization and spectral response.
    Yang H
    J Phys Chem A; 2007 Jun; 111(23):4987-97. PubMed ID: 17508729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing.
    Payne L; Zoriniants G; Masia F; Arkill KP; Verkade P; Rowles D; Langbein W; Borri P
    Faraday Discuss; 2015; 184():305-20. PubMed ID: 26416674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of spectral anisotropy of gold nanoparticles.
    Cang H; Montiel D; Xu CS; Yang H
    J Chem Phys; 2008 Jul; 129(4):044503. PubMed ID: 18681656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties.
    Jans H; Jans K; Lagae L; Borghs G; Maes G; Huo Q
    Nanotechnology; 2010 Nov; 21(45):455702. PubMed ID: 20947937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels.
    Navarro JR; Werts MH
    Analyst; 2013 Jan; 138(2):583-92. PubMed ID: 23172138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition.
    Hwang WS; Truong PL; Sim SJ
    Anal Biochem; 2012 Feb; 421(1):213-8. PubMed ID: 22146558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.
    Boutopoulos C; Hatef A; Fortin-Deschênes M; Meunier M
    Nanoscale; 2015 Jul; 7(27):11758-65. PubMed ID: 26104482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging.
    Gao J; Huang X; Liu H; Zan F; Ren J
    Langmuir; 2012 Mar; 28(9):4464-71. PubMed ID: 22276658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
    Calzolai L; Gilliland D; Garcìa CP; Rossi F
    J Chromatogr A; 2011 Jul; 1218(27):4234-9. PubMed ID: 21288528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe.
    Li S; Liao L; Wu R; Yang Y; Xu L; Xiao X; Nie C
    Anal Bioanal Chem; 2015 Nov; 407(29):8911-8. PubMed ID: 26403237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy.
    Rosman C; Pierrat S; Henkel A; Tarantola M; Schneider D; Sunnick E; Janshoff A; Sönnichsen C
    Small; 2012 Dec; 8(23):3683-90. PubMed ID: 22888068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy.
    Ortalan V; Zewail AH
    J Am Chem Soc; 2011 Jul; 133(28):10732-5. PubMed ID: 21615171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of hydrodynamic properties of bare gold and silver nanoparticles as a fluorescent probe using its surface-plasmon-induced photoluminescence by fluorescence correlation spectroscopy.
    Prashanthi S; Lanke SR; Kumar PH; Siva D; Bangal PR
    Appl Spectrosc; 2012 Jul; 66(7):835-41. PubMed ID: 22710248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.