These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 24460219)
1. Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination. Han C; Yang P; Sakata K; Komatsu S J Proteome Res; 2014 Mar; 13(3):1766-82. PubMed ID: 24460219 [TBL] [Abstract][Full Text] [Related]
2. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Wei T; He Z; Tan X; Liu X; Yuan X; Luo Y; Hu S Biochem Biophys Res Commun; 2015 Aug; 464(1):176-81. PubMed ID: 26116530 [TBL] [Abstract][Full Text] [Related]
3. Gel-based comparative phosphoproteomic analysis on rice embryo during germination. Han C; Wang K; Yang P Plant Cell Physiol; 2014 Aug; 55(8):1376-94. PubMed ID: 24793751 [TBL] [Abstract][Full Text] [Related]
4. Gene expression profile changes in germinating rice. He D; Han C; Yang P J Integr Plant Biol; 2011 Oct; 53(10):835-44. PubMed ID: 21910826 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Sano N; Permana H; Kumada R; Shinozaki Y; Tanabata T; Yamada T; Hirasawa T; Kanekatsu M Plant Cell Physiol; 2012 Apr; 53(4):687-98. PubMed ID: 22383627 [TBL] [Abstract][Full Text] [Related]
6. Proteomic Analysis of Phosphoproteins in the Rice Nucleus During the Early Stage of Seed Germination. Li M; Yin X; Sakata K; Yang P; Komatsu S J Proteome Res; 2015 Jul; 14(7):2884-96. PubMed ID: 26035336 [TBL] [Abstract][Full Text] [Related]
7. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. Kim H; Hwang H; Hong JW; Lee YN; Ahn IP; Yoon IS; Yoo SD; Lee S; Lee SC; Kim BG J Exp Bot; 2012 Jan; 63(2):1013-24. PubMed ID: 22071266 [TBL] [Abstract][Full Text] [Related]
8. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. Kim ST; Wang Y; Kang SY; Kim SG; Rakwal R; Kim YC; Kang KY J Proteome Res; 2009 Jul; 8(7):3598-605. PubMed ID: 19472976 [TBL] [Abstract][Full Text] [Related]
9. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. Lee KW; Chen PW; Yu SM Plant Cell Environ; 2014 Oct; 37(10):2234-44. PubMed ID: 24575721 [TBL] [Abstract][Full Text] [Related]
10. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956 [TBL] [Abstract][Full Text] [Related]
11. Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Li QF; Xiong M; Xu P; Huang LC; Zhang CQ; Liu QQ Sci Rep; 2016 Oct; 6():34583. PubMed ID: 27703189 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of rice (Oryza sativa) seeds during germination. Yang P; Li X; Wang X; Chen H; Chen F; Shen S Proteomics; 2007 Sep; 7(18):3358-68. PubMed ID: 17849412 [TBL] [Abstract][Full Text] [Related]
13. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice. Ye N; Li H; Zhu G; Liu Y; Liu R; Xu W; Jing Y; Peng X; Zhang J Plant Cell Physiol; 2014 Nov; 55(11):2008-16. PubMed ID: 25273891 [TBL] [Abstract][Full Text] [Related]
14. iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination. Li QF; Wang JD; Xiong M; Wei K; Zhou P; Huang LC; Zhang CQ; Fan XL; Liu QQ Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400353 [TBL] [Abstract][Full Text] [Related]
15. Study of lanthanum on seed germination and growth of rice. Fashui H; Ling W; Chao L Biol Trace Elem Res; 2003 Sep; 94(3):273-86. PubMed ID: 12972694 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLD beta 1 in seed germination. Li G; Lin F; Xue HW Cell Res; 2007 Oct; 17(10):881-94. PubMed ID: 17876344 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920 [TBL] [Abstract][Full Text] [Related]
18. The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10. Bhatnagar N; Min MK; Choi EH; Kim N; Moon SJ; Yoon I; Kwon T; Jung KH; Kim BG Plant Mol Biol; 2017 Mar; 93(4-5):389-401. PubMed ID: 28000033 [TBL] [Abstract][Full Text] [Related]
19. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. He D; Han C; Yao J; Shen S; Yang P Proteomics; 2011 Jul; 11(13):2693-713. PubMed ID: 21630451 [TBL] [Abstract][Full Text] [Related]
20. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). Qiu J; Hou Y; Tong X; Wang Y; Lin H; Liu Q; Zhang W; Li Z; Nallamilli BR; Zhang J Plant Mol Biol; 2016 Feb; 90(3):249-65. PubMed ID: 26613898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]