These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24460242)
1. Choosing feature selection and learning algorithms in QSAR. Eklund M; Norinder U; Boyer S; Carlsson L J Chem Inf Model; 2014 Mar; 54(3):837-43. PubMed ID: 24460242 [TBL] [Abstract][Full Text] [Related]
2. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
5. A comparative study on feature selection for a risk prediction model for colorectal cancer. Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951 [TBL] [Abstract][Full Text] [Related]
6. Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships. Hasegawa K; Funatsu K SAR QSAR Environ Res; 2000; 11(3-4):189-209. PubMed ID: 10969871 [TBL] [Abstract][Full Text] [Related]
7. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities. Goodarzi M; Freitas MP; Jensen R J Chem Inf Model; 2009 Apr; 49(4):824-32. PubMed ID: 19338295 [TBL] [Abstract][Full Text] [Related]
8. Multiclass feature selection with kernel Gram-matrix-based criteria. Ramona M; Richard G; David B IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1611-23. PubMed ID: 24808006 [TBL] [Abstract][Full Text] [Related]
9. A new hybrid intelligent system for accurate detection of Parkinson's disease. Hariharan M; Polat K; Sindhu R Comput Methods Programs Biomed; 2014 Mar; 113(3):904-13. PubMed ID: 24485390 [TBL] [Abstract][Full Text] [Related]
10. Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors. Jalali-Heravi M; Kyani A Eur J Med Chem; 2007 May; 42(5):649-59. PubMed ID: 17316919 [TBL] [Abstract][Full Text] [Related]
11. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Zhao CY; Zhang HX; Zhang XY; Liu MC; Hu ZD; Fan BT Toxicology; 2006 Jan; 217(2-3):105-19. PubMed ID: 16213080 [TBL] [Abstract][Full Text] [Related]
12. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Balabin RM; Lomakina EI Analyst; 2011 Apr; 136(8):1703-12. PubMed ID: 21350755 [TBL] [Abstract][Full Text] [Related]
13. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
14. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Golmohammadi H; Dashtbozorgi Z; Acree WE Eur J Pharm Sci; 2012 Sep; 47(2):421-9. PubMed ID: 22771548 [TBL] [Abstract][Full Text] [Related]
15. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Majid A; Ali S; Iqbal M; Kausar N Comput Methods Programs Biomed; 2014 Mar; 113(3):792-808. PubMed ID: 24472367 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
18. Three new consensus QSAR models for the prediction of Ames genotoxicity. Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809 [TBL] [Abstract][Full Text] [Related]
19. Long-term time series prediction using OP-ELM. Grigorievskiy A; Miche Y; Ventelä AM; Séverin E; Lendasse A Neural Netw; 2014 Mar; 51():50-6. PubMed ID: 24365536 [TBL] [Abstract][Full Text] [Related]
20. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors. Cormanich RA; Goodarzi M; Freitas MP Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]