These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 24461228)
1. Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. Zhang Q; Marsolais F Phytochemistry; 2014 Mar; 99():36-43. PubMed ID: 24461228 [TBL] [Abstract][Full Text] [Related]
2. ω-Amidase: an underappreciated, but important enzyme in L-glutamine and L-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Cooper AJ; Shurubor YI; Dorai T; Pinto JT; Isakova EP; Deryabina YI; Denton TT; Krasnikov BF Amino Acids; 2016 Jan; 48(1):1-20. PubMed ID: 26259930 [TBL] [Abstract][Full Text] [Related]
3. Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Krasnikov BF; Chien CH; Nostramo R; Pinto JT; Nieves E; Callaway M; Sun J; Huebner K; Cooper AJ Biochimie; 2009 Sep; 91(9):1072-80. PubMed ID: 19595734 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. Zhang Q; Lee J; Pandurangan S; Clarke M; Pajak A; Marsolais F Phytochemistry; 2013 Jan; 85():30-5. PubMed ID: 23098902 [TBL] [Abstract][Full Text] [Related]
5. Assay and purification of omega-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the alpha-keto acid analogues of glutamine and asparagine. Krasnikov BF; Nostramo R; Pinto JT; Cooper AJ Anal Biochem; 2009 Aug; 391(2):144-50. PubMed ID: 19464248 [TBL] [Abstract][Full Text] [Related]
6. The metabolic importance of the overlooked asparaginase II pathway. Cooper AJL; Dorai T; Pinto JT; Denton TT Anal Biochem; 2022 May; 644():114084. PubMed ID: 33347861 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into the catalytic active site and activity of human Nit2/ω-amidase: kinetic assay and molecular dynamics simulation. Chien CH; Gao QZ; Cooper AJ; Lyu JH; Sheu SY J Biol Chem; 2012 Jul; 287(31):25715-26. PubMed ID: 22674578 [TBL] [Abstract][Full Text] [Related]
8. Asparagine catabolism in rat liver mitochondria. Moraga-Amador DA; MacPhee-Quiggley KM; Keefer JF; Schuster SM Arch Biochem Biophys; 1989 Jan; 268(1):314-26. PubMed ID: 2912380 [TBL] [Abstract][Full Text] [Related]
9. High activities of glutamine transaminase K (dichlorovinylcysteine beta-lyase) and omega-amidase in the choroid plexus of rat brain. Cooper AJ; Abraham DG; Gelbard AS; Lai JC; Petito CK J Neurochem; 1993 Nov; 61(5):1731-41. PubMed ID: 8228989 [TBL] [Abstract][Full Text] [Related]
11. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. Ellens KW; Richardson LG; Frelin O; Collins J; Ribeiro CL; Hsieh YF; Mullen RT; Hanson AD Phytochemistry; 2015 May; 113():160-9. PubMed ID: 24837359 [TBL] [Abstract][Full Text] [Related]
13. Asparagine and glutamine metabolism in Rhodopseudomonas acidophila. Herbert RA; Macfarlane GT Arch Microbiol; 1980 Dec; 128(2):233-8. PubMed ID: 7212928 [TBL] [Abstract][Full Text] [Related]
14. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites. Hariharan VA; Denton TT; Paraszcszak S; McEvoy K; Jeitner TM; Krasnikov BF; Cooper AJ Biology (Basel); 2017 Mar; 6(2):. PubMed ID: 28358347 [TBL] [Abstract][Full Text] [Related]
15. Molecular identification of omega-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2. Jaisson S; Veiga-da-Cunha M; Van Schaftingen E Biochimie; 2009 Sep; 91(9):1066-71. PubMed ID: 19596042 [TBL] [Abstract][Full Text] [Related]
16. Homologous gene clusters of nicotine catabolism, including a new ω-amidase for α-ketoglutaramate, in species of three genera of Gram-positive bacteria. Cobzaru C; Ganas P; Mihasan M; Schleberger P; Brandsch R Res Microbiol; 2011 Apr; 162(3):285-91. PubMed ID: 21288482 [TBL] [Abstract][Full Text] [Related]
17. Structures of enzyme-intermediate complexes of yeast Nit2: insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2. Liu H; Gao Y; Zhang M; Qiu X; Cooper AJ; Niu L; Teng M Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1470-81. PubMed ID: 23897470 [TBL] [Abstract][Full Text] [Related]
18. Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Liepman AH; Olsen LJ Plant J; 2001 Mar; 25(5):487-98. PubMed ID: 11309139 [TBL] [Abstract][Full Text] [Related]
19. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. Cooper AJL; Dorai T; Pinto JT; Denton TT Biology (Basel); 2023 Aug; 12(8):. PubMed ID: 37627015 [TBL] [Abstract][Full Text] [Related]
20. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. Grigoryev S; Stewart AE; Kwon YT; Arfin SM; Bradshaw RA; Jenkins NA; Copeland NG; Varshavsky A J Biol Chem; 1996 Nov; 271(45):28521-32. PubMed ID: 8910481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]