BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24461562)

  • 1. Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE.
    Veleti SK; Lindenberger JJ; Ronning DR; Sucheck SJ
    Bioorg Med Chem; 2014 Feb; 22(4):1404-11. PubMed ID: 24461562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of a poly-hydroxypyrolidine-based inhibitor of Mycobacterium tuberculosis GlgE.
    Veleti SK; Lindenberger JJ; Thanna S; Ronning DR; Sucheck SJ
    J Org Chem; 2014 Oct; 79(20):9444-50. PubMed ID: 25137149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors.
    Lindenberger JJ; Veleti SK; Wilson BN; Sucheck SJ; Ronning DR
    Sci Rep; 2015 Aug; 5():12830. PubMed ID: 26245983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 2-deoxy-2,2-difluoro-α-maltosyl fluoride and its X-ray structure in complex with Streptomyces coelicolor GlgEI-V279S.
    Thanna S; Lindenberger JJ; Gaitonde VV; Ronning DR; Sucheck SJ
    Org Biomol Chem; 2015 Jul; 13(27):7542-50. PubMed ID: 26072729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The significance of GlgE as a new target for tuberculosis.
    Kalscheuer R; Jacobs WR
    Drug News Perspect; 2010 Dec; 23(10):619-24. PubMed ID: 21180647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Glucan biosynthesis and the GlgE pathway in Mycobacterium tuberculosis.
    Bornemann S
    Biochem Soc Trans; 2016 Feb; 44(1):68-73. PubMed ID: 26862190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A temperature-sensitive Mycobacterium smegmatis glgE mutation leads to a loss of GlgE enzyme activity and thermostability and the accumulation of α-maltose-1-phosphate.
    Syson K; Batey SFD; Schindler S; Kalscheuer R; Bornemann S
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129783. PubMed ID: 33166604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Mycobacterium thermoresistibile GlgE defines novel conformational states that contribute to the catalytic mechanism.
    Mendes V; Blaszczyk M; Maranha A; Empadinhas N; Blundell TL
    Sci Rep; 2015 Nov; 5():17144. PubMed ID: 26616850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway.
    Kalscheuer R; Syson K; Veeraraghavan U; Weinrick B; Biermann KE; Liu Z; Sacchettini JC; Besra G; Bornemann S; Jacobs WR
    Nat Chem Biol; 2010 May; 6(5):376-84. PubMed ID: 20305657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target.
    Syson K; Stevenson CEM; Rejzek M; Fairhurst SA; Nair A; Bruton CJ; Field RA; Chater KF; Lawson DM; Bornemann S
    J Biol Chem; 2011 Nov; 286(44):38298-38310. PubMed ID: 21914799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based
    Singh K; Sharma A; Upadhyay TK; Hayat-Ul-Islam M; Khan MKA; Dwivedi UN; Sharma R
    Curr Comput Aided Drug Des; 2022; 18(3):213-227. PubMed ID: 35747982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate.
    Syson K; Stevenson CE; Rashid AM; Saalbach G; Tang M; Tuukkanen A; Svergun DI; Withers SG; Lawson DM; Bornemann S
    Biochemistry; 2014 Apr; 53(15):2494-504. PubMed ID: 24689960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation.
    Leiba J; Syson K; Baronian G; Zanella-Cléon I; Kalscheuer R; Kremer L; Bornemann S; Molle V
    J Biol Chem; 2013 Jun; 288(23):16546-16556. PubMed ID: 23609448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Glucan pathway as a novel Mtb drug target: structural insights and cues for polypharmcological targeting of GlgB and GlgE.
    Agrawal P; Gupta P; Swaminathan K; Parkesh R
    Curr Med Chem; 2014; 21(35):4074-84. PubMed ID: 25174919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Network for the Biosynthesis of Intra- and Extracellular α-Glucans Required for Virulence of Mycobacterium tuberculosis.
    Koliwer-Brandl H; Syson K; van de Weerd R; Chandra G; Appelmelk B; Alber M; Ioerger TR; Jacobs WR; Geurtsen J; Bornemann S; Kalscheuer R
    PLoS Pathog; 2016 Aug; 12(8):e1005768. PubMed ID: 27513637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate.
    Miah F; Bibb MJ; Barclay JE; Findlay KC; Bornemann S
    Microbiology (Reading); 2016 Jul; 162(7):1208-1219. PubMed ID: 27121970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE.
    Syson K; Stevenson CE; Miah F; Barclay JE; Tang M; Gorelik A; Rashid AM; Lawson DM; Bornemann S
    J Biol Chem; 2016 Oct; 291(41):21531-21540. PubMed ID: 27531751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of α-Glucan by GlgE and GlgB in Mycobacteria and Streptomycetes.
    Rashid AM; Batey SF; Syson K; Koliwer-Brandl H; Miah F; Barclay JE; Findlay KC; Nartowski KP; Khimyak YZ; Kalscheuer R; Bornemann S
    Biochemistry; 2016 Jun; 55(23):3270-84. PubMed ID: 27221142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations.
    Sengupta S; Roy D; Bandyopadhyay S
    J Biomol Struct Dyn; 2015; 33(12):2655-66. PubMed ID: 25669125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds.
    Santos P; Lopez-Vallejo F; Ramírez D; Caballero J; Mata Espinosa D; Hernández-Pando R; Soto CY
    Bioorg Med Chem; 2020 Feb; 28(3):115256. PubMed ID: 31879181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.