These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 24461822)
1. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Lin WH; Lu YH; Hsu YJ J Colloid Interface Sci; 2014 Mar; 418():87-94. PubMed ID: 24461822 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Yang X; Zhong H; Zhu Y; Shen J; Li C Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100 [TBL] [Abstract][Full Text] [Related]
3. Graphene Oxide-Supported Ag Nanoplates as LSPR Tunable and Reproducible Substrates for SERS Applications with Optimized Sensitivity. Hou H; Wang P; Zhang J; Li C; Jin Y ACS Appl Mater Interfaces; 2015 Aug; 7(32):18038-45. PubMed ID: 26203672 [TBL] [Abstract][Full Text] [Related]
4. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Choi S; Ahn M; Kim J Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665 [TBL] [Abstract][Full Text] [Related]
5. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. Xu J; Du J; Jing C; Zhang Y; Cui J ACS Appl Mater Interfaces; 2014 May; 6(9):6891-7. PubMed ID: 24720732 [TBL] [Abstract][Full Text] [Related]
6. Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. Li X; Hu H; Li D; Shen Z; Xiong Q; Li S; Fan HJ ACS Appl Mater Interfaces; 2012 Apr; 4(4):2180-5. PubMed ID: 22471731 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and Formation Mechanism of Ag Nanoplate-Decorated Nanofiber Mats and Their Application in SERS. Jia P; Chang J; Wang J; Zhang P; Cao B; Geng Y; Wang X; Pan K Chem Asian J; 2016 Jan; 11(1):86-92. PubMed ID: 26395245 [TBL] [Abstract][Full Text] [Related]
8. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. Li J; Zhang G; Wang J; Maksymov IS; Greentree AD; Hu J; Shen A; Wang Y; Trau M ACS Appl Mater Interfaces; 2018 Sep; 10(38):32526-32535. PubMed ID: 30168708 [TBL] [Abstract][Full Text] [Related]
9. Atomically Flat Au Nanoplate Platforms Enable Ultraspecific Attomolar Detection of Protein Biomarkers. Hwang A; Kim E; Moon J; Lee H; Lee M; Jeong J; Lim EK; Jung J; Kang T; Kim B ACS Appl Mater Interfaces; 2019 May; 11(21):18960-18967. PubMed ID: 31062578 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of a Au nanoporous film by self-organization of networked ultrathin nanowires and its application as a surface-enhanced Raman scattering substrate for single-molecule detection. Liu R; Liu JF; Zhou XX; Sun MT; Jiang GB Anal Chem; 2011 Dec; 83(23):9131-7. PubMed ID: 22017457 [TBL] [Abstract][Full Text] [Related]
11. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Zhu C; Meng G; Huang Q; Huang Z J Hazard Mater; 2012 Apr; 211-212():389-95. PubMed ID: 21871725 [TBL] [Abstract][Full Text] [Related]
12. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules. Yan X; Zhao H; Song H; Ma J; Shi X Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121566. PubMed ID: 35841855 [TBL] [Abstract][Full Text] [Related]
13. Facile fabrication of ternary TiO Qu LL; Wang N; Zhu G; Yadav TP; Shuai X; Bao D; Yang G; Li D; Li H Talanta; 2018 Aug; 186():265-271. PubMed ID: 29784359 [TBL] [Abstract][Full Text] [Related]
14. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering. Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352 [TBL] [Abstract][Full Text] [Related]
15. Intra-nanogap controllable Au plates as efficient, robust, and reproducible surface-enhanced Raman scattering-active platforms. Yang S; Kim M; Park S; Kim H; Jeong J; Jung J; Lim EK; Seo MK; Kim B; Kang T RSC Adv; 2019 Apr; 9(23):13007-13015. PubMed ID: 35520792 [TBL] [Abstract][Full Text] [Related]
16. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Xie Y; Wang X; Han X; Xue X; Ji W; Qi Z; Liu J; Zhao B; Ozaki Y Analyst; 2010 Jun; 135(6):1389-94. PubMed ID: 20405060 [TBL] [Abstract][Full Text] [Related]
17. Formation and Self-assembly of Gold Nanoplates through an Interfacial Reaction for Surface-Enhanced Raman Scattering. Ma Y; Yung LY ACS Appl Mater Interfaces; 2016 Jun; 8(24):15567-73. PubMed ID: 27276116 [TBL] [Abstract][Full Text] [Related]
18. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering. Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228 [TBL] [Abstract][Full Text] [Related]
19. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates. Liu L; Yang H; Ren X; Tang J; Li Y; Zhang X; Cheng Z Nanoscale; 2015 Mar; 7(12):5147-51. PubMed ID: 25721784 [TBL] [Abstract][Full Text] [Related]
20. Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy. Costa JC; Sant'ana AC; Corio P; Temperini ML Talanta; 2006 Dec; 70(5):1011-6. PubMed ID: 18970875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]